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ABSTRACT

We present a general single-channel speech dereverberation method
based on an explicit generative model of reverberant and noisy
speech. To regularize the model, we use a pre-learned speech model
of clean and dry speech as a prior and perform posterior inference
over the latent clean speech. The reverberation kernel and addi-
tive noise are estimated under the maximum-likelihood framework.
Our model assumes no prior knowledge about specific speakers or
rooms, and consequently our method can automatically adapt to
various reverberant and noisy conditions. We evaluate the proposed
model with both simulated data and real recordings from the RE-
VERB Challenge1 in the task of speech enhancement and obtain
results comparable to or better than the state-of-the-art.

Index Terms— dereverberation, Bayesian modeling, variational
inference, non-negative matrix factorization

1. INTRODUCTION

Speech enhancement in the presence of reverberation and noise
remains a challenging problem which draws attention from both
academic and industrial communities. The REVERB (REverberant
Voice Enhancement and Recognition Benchmark) Challenge which
was held last year is a successful attempt to provide a common
dataset and evaluation metrics for speech dereverberation research.

In this paper, we present a novel single-channel speech dere-
verberation method that explicitly models the generative process of
reverberant and noisy speech. The model treats the underlying clean
speech as a set of latent variables. A generic speech model fit before-
hand to a corpus of clean and dry speech is used as a prior on these
variables, regularizing the model and making it possible to solve the
otherwise underdetermined dereverberation problem. The model is
capable of suppressing reverberation without any prior knowledge
of or assumptions about the specific speakers or rooms. In fact, our
experiments on both simulated and real data show that our approach
can work on speech that is quite different than that used to train
the speech model—specifically, we will show that a model of North
American English speech can be very effective on British English
speech.

1.1. Related work

Habets [1] provides a thorough review of various single- and multi-
microphone speech dereverberation techniques. Using the categories
developed in [1], explicit speech modeling techniques, which exploit
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the underlying structure of the anechoic speech signal, are particu-
larly relevant to what we propose here.

Attias et al. [2] propose a unified probabilistic framework for
denoising and dereverberation of speech signals. Their model shares
a similar generative flavor with ours; they train a standard auto-
regressive (AR) model on clean and dry speech signals as a speech
model, and perform inference in the frequency domain. However,
even though the model was designed for both tasks of denoising and
dereverberation, the latter was not thoroughly evaluated.

Liang et al. [3] tackle the problem of speech decoloration (e.g.
reverberation with short T60) based on the product-of-filters (PoF)
[4] speech model. In this work, the PoF model is adopted as a strong
speech model and a separate set of parameters is added to account for
linear distortion effects; this work is the main inspiration behind the
model presented in this paper. However, the model in [3] is funda-
mentally limited to short-time effects (i.e., distortions whose effects
are smeared across only one DFT window), and consequently is not
capable of suppressing longer reverberation.

Kumar et al. [5] propose a model for denoising and dereverbera-
tion in the context of ASR. Their method makes similar assumption
to ours that the reverberant speech spectra are the convolution of
clean speech spectra and room impulse response spectra. However,
unlike what we will present in Section 2.2, they use non-negative
matrix factorization (NMF) as a way to model this convolution op-
eration and only put sparsity constraint on the clean speech spectra,
instead of using a speech model learned beforehand.

2. PROPOSED APPROACH

The core of our approach is a probabilistic model of a process that
generates reverberant and noisy speech. This model begins with a
pre-learned model of clean and dry speech, and defines a random
process by which clean speech is corrupted. Once we have defined
the model, the problem of dereverberation and denoising can be re-
cast as a statistical inference problem. We will first present the over-
all framework of our model. Then we will conscript a probabilis-
tic non-negative matrix factorization (NMF) model [6] into the pro-
posed framework for use as a model of clean speech, and derive the
inference algorithm in detail. Finally, we will discuss possible ex-
tensions to other speech models.

2.1. General dereverberation framework

We adopt the notational conventions that upper case bold letters (e.g.
Y,X, and R) denote matrices and lower case bold letters (e.g. y,
x, λ, and r) denote vectors. f ∈ {1, 2, · · · , F} is used to index fre-
quency. t ∈ {1, 2, · · · , T} is used to index time. k ∈ {1, 2, · · · ,K}
is used to index latent components in the pre-learned speech model
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(e.g. NMF model). l ∈ {0, · · · , L− 1} is used to index lags in time
(we use 0-based indexing for lags).

Given magnitude spectra2 of reverberant speech Y ∈ RF×T+ ,
the general dereverberation model is formulated as follows:

Yft ∼ P(
∑
lXf,t−lRfl + λf )

Xft ∼ S(θ)
(1)

P(·) encodes the observational model and S(·) encodes the speech
model. We choose P(·) to be a Poisson distribution, which corre-
sponds to the widely used (e.g. in non-negative matrix factorization
methods [7]) generalized Kullback-Leibler divergence loss function.

The model parameter R ∈ RF×L+ defines a reverberation ker-
nel and λ ∈ RF+ defines the frequency-dependent additive noise
(e.g. stationary background noise). The latent random variables
X ∈ RF×T+ represent the spectra of clean and dry speech. The
pre-learned speech model S(·) (parametrized by θ) acts as a prior
that encourages X to look like clean speech. The goal of the infer-
ence algorithm is to uncover X, and incidentally to estimate R and
λ from the observed reverberant spectra Y.

Since we assume the reverberant effect comes from a patch of
spectra R instead of a single spectrum (as in [3]), the model is capa-
ble of capture reverberation effects that span multiple analysis win-
dows.

2.2. Speech model: probabilistic NMF

Non-negative matrix factorization (NMF) [8] has been used in many
speech-related applications, including denoising [9, 10] and band-
width expansion [11]. Here we use a probabilistic version of NMF
with exponential likelihoods, which corresponds to minimizing the
Itakura-Saito divergence [12]. Concretely, the model is formulated
as follows:

Yft ∼ Poisson(
∑
lXf,t−lRfl + λf )

Xft ∼ Exponential(c
∑
kWfkHkt)

Wfk ∼ Gamma(a, a), Hkt ∼ Gamma(b, b)
(2)

Here a and b are model hyperparameters. c is a free scale param-
eter that we tune to maximize the likelihood of Y. For the latent
components W ∈ RF×K+ , we assume the posterior distribution
q(W|Xclean) has been estimated from clean and dry speech using
procedures similar to what is described in [13]. Therefore, we only
need to compute the posterior over the clean and dry speech X as
well as the weights H ∈ RK×T+ , which we denote as p(X,H|Y).

2.2.1. A variational EM algorithm

To estimate the reverberation kernel R and additive noise λ, we
maximize the likelihood p(Y|R,λ), by marginalizing out the latent
random variables X and H, which yields an instance of expectation-
maximization algorithm.

E-step In the E-step, we compute the posterior p(X,H|Y)
under the current value of model parameters. However, this is in-
tractable to compute due to the non-conjugacy of the model. We
approximate it via variational inference [14] by choosing the follow-
ing variational distribution:

q(X,H) =
∏
t

(∏
f q(Xft)

)∏
k q(Hkt)

q(Xft) = Gamma(Xft; νXft, ρ
X
ft)

q(Hkt) = GIG(Hkt; ν
H
kt, ρ

H
kt, τ

H
kt)

(3)

2In this paper, we work in the magnitude spectral domain. For simplicity,
we will use “spectra” for the rest of the paper.

GIG denotes the generalized inverse-Gaussian distribution, an
exponential-family distribution with the following density:

GIG(x; ν, ρ, τ) =
exp{(ν − 1) log x− ρx− τ/x}ρν/2

2τν/2Kν(2
√
ρτ)

(4)

for x ≥ 0, ρ ≥ 0, and τ ≥ 0. Kν(·) denotes a modified Bessel
function of the second kind. We will see below that using the GIG
distribution for q(Hkt) allows us to tune q(H) using closed-form
updates.

We tune the variational parameters {νX ,ρX} and {νH ,ρH , τH}
so that the Kullback-Leibler divergence between the variational dis-
tribution q(X,H) and the true posterior p(X,H|Y) is minimized.
This is equivalent to maximizing the following variational objective
(Let St ∈ RF×L+ be a patch X[t−L+1:t]):∑

t

(
Eq[log p(yt,St,ht|λ,R)]− Eq[log q(xt,ht)]

)
=
∑
f,t Eq[log p(Yft|s

t
f , λf , rf )] +

∑
f,t Eq

[
log

p(Xft|wf ,ht)

q(Xft)

]
+
∑
k,t Eq

[
log p(Hkt|b)

q(Hkt)

]
(5)

We cannot compute the expectations in the first and second
terms analytically. However, we can compute lower bounds on
both of them. For the first term, we can apply Jensen’s inequality
and introduce auxiliary variables φλft ≥ 0 and φRftl ≥ 0 where
φλft+

∑
l φ

R
ftl = 1; For the second term, we can introduce auxiliary

variables φXftk ≥ 0 where
∑
k φ

X
ftk = 1 and ωft > 0 to bound it as

in [13]. The lower bound of the variational objective in Equation 5:

L 4=
∑
f,t

{
Yft
(
φλft(log λf − log φλft) +

∑
l φ

R
ftl(Eq[logXf,t−l]

+ logRfl − log φRftl)
)
− λf −

∑
l Eq[Xf,t−l]Rfl

}
+
∑
f,t

{(
ρXft −

∑
k

(φX
ftk)2

c
Eq
[

1
WfkHkt

])
Eq[Xft]− log(c ωft)

+ (1− νXft)Eq[logXft] +AΓ(νXft, ρ
X
ft)− 1

ωft

∑
k Eq[WfkHkt]

}
+
∑
k,t

{
(b− νHkt)Eq[logHkt]− (b− ρHkt)Eq[Hkt]− τHktEq

[
1
Hkt

]
+AGIG(νHkt, ρ

H
kt, τ

H
kt)

}
+const

(6)

where AΓ(·) and AGIG(·) denote the log-partition functions for
gamma and GIG distribution, respectively3. Optimizing over φ’s
with Lagrangian multipliers, the bound for the first term in Equation
5 is tightest when

φλft =
λf

λf +
∑
j exp{Eq[logXf,t−j ]}Rfj

;

φRftl =
exp{Eq[logXf,t−l]}Rfl

λf +
∑
j exp{Eq[logXf,t−j ]}Rfj

.

(7)

3The explicit forms are not important here, because for exponential family
distributions, taking derivative of log-partition function with respect to the
natural parameter yields the expected sufficient statistic.



Similarly, we can optimize over φXftk and ωft and tighten the bound
on the second term:

φXftk ∝
(
Eq
[

1

WfkHkt

])−1

; ωft =
∑
k

Eq[WfkHkt] (8)

Given the lower bound in Equation 6, we can maximize L using
coordinate ascent, iteratively optimizing each variational parameter
while holding all other parameters fixed. To update {νXt ,ρXt } by
taking the derivative of L and setting it to 0, we obtain:

νXft = 1 +
∑
l Yf,t+lφ

R
f,t+l,l;

ρXft =
1
c
·
(∑

k Eq
[

1
WfkHkt

]−1)−1

+
∑
lRfl.

(9)

Similarly, the derivative of L with respect to {νHt ,ρHt , τHt } equals
0 and L is maximized when

νHkt = b; ρHkt = b+
∑
f

Eq [Wfk]

ωft
;

τHkt =
∑
f

Eq [Xft]

c
(φXftk)

2Eq
[

1
Wft

]
.

(10)

Every time the value of variational parameters changes, the scale c
should be updated accordingly:

c = 1
FT

∑
f,t Eq[Xft]

(∑
k Eq

[
1

WfkHkt

]−1)−1

(11)

Finally, the necessary expectations are (ψ(·) is the digamma func-
tion)

Eq[Xft] =
νXft
ρXft

; Eq[logXft] = ψ(νXft)− log ρXft;

Eq[Hkt] =
Kν+1(2

√
ρτ)
√
τ

Kν(2
√
ρτ)
√
ρ

; Eq
[

1

Hkt

]
=
Kν−1(2

√
ρτ)
√
ρ

Kν(2
√
ρτ)
√
τ
.

(12)

M-step In the M-step, given the approximated posterior esti-
mated from the E-step, we can take the derivative of L with respect
to λ and R and obtain the following updates:

λf =
1

T

∑
t

φλftYft; Rfl =

∑
t φ

R
ftlYft∑

t Eq[Xft]
(13)

The overall variational EM algorithm alternates between two
steps:

• In the E-step, the speech model attempts to explain the ob-
served spectra as a mixture of clean speech, reverberation,
and noise. In particular, it updates its beliefs about the latent
clean speech via updating the variational distribution q(X).

• In the M-step, the model updates its estimate of the reverber-
ation kernel and additive noise given its current beliefs about
the clean speech.

A good speech model should assign high probability to clean speech
and lower probability to speech corrupted with reverberation and ad-
ditive noise. The full model therefore has an incentive to explain
reverberation and noises using the reverberation kernel and addi-
tive noise parameters, rather than considering them part of the clean
speech. In other words, the model should try to “explain away” re-
verberation and noise and leave behind spectra that are likely under
the speech model if it can.

By iteratively performing E- and M-steps, we are guaranteed
to reach a stationary point of the objective L. To obtain the dere-
verbed spectra, we can simply take the expectation of X under the
variational distribution. To recover time-domain signals, we adopt
the standard Wiener filter based on the estimated dereverbed spectra
Eq[X]. However, in practice we notice that the Wiener filter aggres-
sively takes energy from the complex spectra due to the crudeness of
the estimated dereverbed spectra and produces artifacts. We apply a
simple heuristic to smooth Eq[X] by convolving it with an attenu-
ated reverberation kernel R∗, where R∗f,0 = Rf,0 and R∗fl = αRfl
for l ∈ {1, · · · , L− 1}. α ∈ (0, 1) controls the attenuation level.

2.3. Extension with other speech models

As is evident from the general model in Equation 1, the speech model
S(·) can take different forms. Here we will briefly describe an alter-
nate speech model: Product-of-Filters (PoF) model [4].

The PoF model is motivated by the widely used homomorphic
filtering approach to audio and speech signal processing [15] and it
attempts to decompose the log-spectra into a sparse and non-negative
linear combination of “filters”, which are learned from data. Incor-
porating the PoF model into the framework defined in Equation 1 is
straightforward:

Yft ∼ Poisson(
∑
lXf,t−lRfl + λf )

Xft ∼ Gamma(γf , γf
∏
k exp{−UfkHkt})

Hkt ∼ Gamma(αk, αk)
(14)

where the filters U ∈ RF×K , sparsity level α ∈ RK+ , and
frequency-dependent noise-level γ ∈ RF+ are the PoF parame-
ters learned from clean and dry speech. H ∈ RK×T+ denotes the
weights of linear combination of filters. The inference can be carried
out in a similar way as derived in Section 2.2.

Note that both NMF and PoF assume independence between
frames, which is unrealistic. This assumption could be relaxed by
imposing temporal structure to the speech model, e.g. with a non-
negative hidden Markov model [16] or a recurrent neural network
[17].

3. EXPERIMENTS

We evaluated the proposed model under the REVERB Challenge
speech enhancement task. The challenge data comes from two
sources: One is simulated reverberant and noisy speech, which is
generated by convolving clean utterances from WSJCAM0 cor-
pus [18] with measured room impulse responses and then adding
measured background noise signals; The other is real recording
from MC-WSJ-AV corpus [19], which is a re-recorded version of
WSJCAM0 in a meeting room environment.

For simulated data, three rooms with increasing reverberation
lengths (T60’s of the three rooms are 0.25s, 0.5s, 0.7s, respectively)
are used; for each room, two microphone positions (near and far) are
adopted, which in total provides six different evaluation conditions.
In the real recording, the meeting room has a measured T60 of 0.7s.
The detailed reverberation and recording specifications can be found
on the REVERB Challenge website.

Speech enhancement methods are evaluated by several metrics,
including cepstrum distance (CD) [20], log-likelihood ratio (LLR)
[20], frequency-weighted segmental SNR (FWSegSNR) [20], and
speech-to-reverberation modulation energy ratio (SRMR) [21]. For
real recordings, only the non-intrusive SRMR can be used.
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Fig. 1. The speech enhancement results from the REVERB Challenge evaluation data under different test conditions (Sim: simulated data.
Real: real recording). For each condition, seven results are reported: unprocessed reverberant and noisy speech as baseline, four results
from REVERB Challenge submissions, obtained from http://reverb2014.dereverberation.com/result_se.html, and our
proposed approach using speech models learned from WSJCAM0 and TIMIT, respectively.

Since our model processes each utterance separately without
relying on any particular test condition, we compared our model
with other utterance-based approaches from the REVERB Chal-
lange: Cauchi et al. [22], González et al. [23], Wisdom et al. [24],
and Xiao et al. [25]. We trained two exponential NMF speech
models with K = 50 as the priors used in the dereverberation algo-
rithm: one is from the clean training corpus of WSJCAM0 (British
English) and the other is from the TIMIT corpus (American En-
glish). In our STFT, we used 1024-sample windows (zero-padded
to 2048 samples) with 512-sample overlap. Inference was carried
out as described in Section 2.2. We used model hyperparameters
a = b = 0.1, reverberation kernel length L = 20 (640 ms), and
attenuation level α = 0.1.

The speech enhancement results are summarized in Figure 1.
The results are grouped by different test conditions. As we can see,
on average our proposed model improves all metrics except LLR
over the unprocessed speech by a large margin.

At first glance, our results do not stand out when the reverber-
ant effect is relatively small (Room 1). However, as T60 increases,
we achieve results close to or better than the best reported in the
REVERB Challenge, regardless of microphone position.

Note that our approach performs equally well when using a
speech model trained on American English speech and tested on
British English speech. That is, our performance is competitive with
the state of the art even when we make no use at all of the provided
WSJCAM0 training data. This robustness to training-set-test-set
mismatch allows our method to be used in real-world applications
where we have no prior knowledge about the specific people who
are speaking or the room that is coloring their speech. Our ability
to do without speaker/room-specific clean training data may also
explain the superior performance of our model on the real recording;
Xiao et al. [25] hypothesize that their deep-neural-network-based
approach may overfit to the rooms in the training set, which is not a
problem for our approach.

4. CONCLUSION

In this paper, we propose a general single-channel speech derever-
beration model, which follows the generative process of the reverber-
ant and noisy speech. A speech model, learned from clean and dry
speech, is used as a prior to properly regularize the model. We adapt
NMF as a particular speech model into the general algorithm and
derive an efficient closed-form variational EM algorithm to perform
posterior inference and to estimate reverberation and noise parame-
ters. We evaluate our model on a speech enhancement task from the
REVERB Challenge and obtain promising results on both simulated
data and real recording.

There are a few natural directions in which our model can be ex-
tended. As pointed out in Section 2.3, a speech model with tempo-
ral structure could be adopted. Stochastic variational inference [26]
might allow our model to perform real-time/online dereverberation.
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[23] Dayana Ribas González, Serguey Crespo Arias, and Jośe Ra-
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