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Abstract
Understanding Music Semantics and User Behavior

with Probabilistic Latent Variable Models

Dawen Liang

Bayesian probabilistic modeling provides a powerful framework for building flexible models to
incorporate latent structures through likelihood model and prior. When we specify a model, we
make certain assumptions about the underlying data-generating process with respect to these latent
structures. For example, the latent Dirichlet allocation (LDA) model assumes that when generating a
document, we first select a latent topic and then select a word that often appears in the selected topic.
We can uncover the latent structures conditioned on the observed data via posterior inference. In this
dissertation, we apply the tools of probabilistic latent variable models and try to understand complex
real-world data about music semantics and user behavior.

We first look into the problem of automatic music tagging – inferring the semantic tags (e.g., “jazz”,
“piano”, “happy”, etc.) from the audio features. We treat music tagging as a matrix completion
problem and apply the Poisson matrix factorization model jointly on the vector-quantized audio
features and a “bag-of-tags” representation. This approach exploits the shared latent structure between
semantic tags and acoustic codewords. We present experimental results on the Million Song Dataset
for both annotation and retrieval tasks, illustrating the steady improvement in performance as more
data is used.

We then move to the intersection between music semantics and user behavior: music recommendation.
The leading performance in music recommendation is achieved by collaborative filtering methods
which exploit the similarity patterns in user’s listening history. We address the fundamental cold-start
problem of collaborative filtering: it cannot recommend new songs that no one has listened to. We
train a neural network on semantic tagging information as a content model and use it as a prior in
a collaborative filtering model. The proposed system is evaluated on the Million Song Dataset and
shows comparably better result than the collaborative filtering approaches, in addition to the favorable
performance in the cold-start case.

Finally, we focus on general recommender systems. We examine two different types of data: implicit
and explicit feedback, and introduce the notion of user exposure (whether or not a user is exposed
to an item) as part of the data-generating process, which is latent for implicit data and observed for
explicit data. For implicit data, we propose a probabilistic matrix factorization model and infer the
user exposure from data. In the language of causal analysis (Imbens and Rubin, 2015), user exposure
has close connection to the assignment mechanism. We leverage this connection more directly for
explicit data and develop a causal inference approach to recommender systems. We demonstrate that
causal inference for recommender systems leads to improved generalization to new data.

Exact posterior inference is generally intractable for latent variables models. Throughout this thesis,
we will design specific inference procedure to tractably analyze the large-scale data encountered under
each scenario.
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1

Chapter 1

Introduction

1.1 Motivation

Understanding complex real-world data is crucial as we are overwhelmed with the massive amount of
information that is constantly generated. For example, there are hundreds or even thousands of new
songs being released every day. Ideally we would like to get personalized spot-on recommendation
without browsing through every single one of them. This requires understanding both the music
semantics (“Is this song a standard upbeat pop tune or a 20-minute multi-sectional epic progressive
rock masterpiece?”) from acoustic waveform, as well as our music preferences, which can be so
subtle that sometimes even we cannot describe precisely ourselves.

As another example, we consider arXiv.org1 where scholars upload the latest scientist discovery
everyday. For a field that is rapidly developing, like machine learning, there can be tens or even
hundreds of new papers being uploaded each day. Even though the papers on arXiv.org are categorized
by subject, it is still impractical to even skim through every new paper in the subject of our interests.
On the other hand, we also do not want to miss the latest scientific progress that is happening in our
field. Ideally we would like to get personalized recommendations from the massive amount of new
papers. Similar to music recommendation, this requires understanding both the content of the paper
(“Is this paper about unsupervised learning or reinforcement learning?”) from the text, as well as our
preferences/fields of interest.

In this dissertation, we aim to understand the complex real-world data (e.g., music, articles, and user
feedback) by applying the tools of Bayesian probabilistic models, or more precisely, latent variable
models. We give a high-level introduction to probabilistic latent variable models below, and put
everything into the context of music and paper recommendation examples outlined above.

1http://arxiv.org is a pre-print repository for scientific papers.

http://arxiv.org
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1.2 Probabilistic latent variable models

The basic idea behind probabilistic latent variable models is that we assume there exists some process
that stochastically generates the data we observe. We further assume that the data-generating process
is governed by some latent structures. As a concrete example, let’s consider latent Dirichlet allocation
model (Blei et al., 2003), a widely used probabilistic latent variable model for documents. The model
assumption is that when generating a document, we first select a latent topic (e.g., business, sports,
or politics), then select a word that often appears in the selected topic (e.g., the word “election” will
commonly appear in a topic about politics), and repeat this process for every word. Here we do not
observe the latent structures (topics). However, when we make such assumption and fit the model
with text data, we are able to discover the latent topics which help us organize, browse, and retrieve
large text corpus more easily and efficiently.

As mentioned above, when we design a model, we make certain assumptions about the latent structures
and data-generating process. The data-generating process does not have to be absolutely correct. (In
fact, they are never correct, as George E. P. Box once put it: “All models are wrong, but some are
useful.”) Related to both music and paper recommendation examples, a commonly used probabilistic
model for recommendation is matrix factorization (details in Section 2.2.2.1). The general model
assumption of matrix factorization for recommendation is that a user’s feedback towards an item
is generated by the combination of two latent variables: user preference and item attribute. The
item attribute can itself be generated from a prior, or generated from a probabilistic model of the
actual item content (acoustic waveform or document text). This seems to be an overly-simplified data-
generating process. However, it proves effective in many scenarios and is widely used in commercial
recommender systems.

When we fit the model via posterior inference (we give details about general inference procedure in
Section 2.1), we uncover these latent structures. These latent structures reveal interesting aspects of
the data, e.g., we know for some users, they enjoy classical music and papers about Bayesian statistics.
Concretely, in Chapter 3, we fit a latent variable model to a music collection of 370k tracks to predict
music semantic tags (e.g., genre, instrumentation, mood, etc.) from acoustic features. By exploring
the model in Table 3.3, we can get an idea of what portion of the acoustic space is being captured by
the latent variables, and whether it is musically coherent. In Chapter 5, we introduce the notation
of user exposure (whether a user is exposed to an item or not) in recommender systems as a latent
variable. After fitting the model, we are able to reason about if the model believes a user has been
exposed to certain items in Figure 5.2 and Figure 5.3. These exploratory studies can help us better
understand the complex data at hand and provide insight into what the model is capturing.

1.3 Contributions

Below we outline the contributions of this dissertation. Since we address a number of different
problems in subsequent chapters, we provide more thorough literature reviews of specific prior work
in each chapter.
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1.3.1 Music understanding and recommendation

Scalable music tagging with Poisson factorization. We develop scalable solution to automatic
music tagging – inferring the semantic tags from the audio features. We treat music tagging as a
matrix completion problem and apply the Poisson factorization model to a large collection of music
data. We explore the fitted model and identify what portion of the acoustic codeword space is being
captured by the latent variables.

Content-aware collaborative music recommendation. We address the fundamental cold-start
problem of collaborative filtering (it cannot recommend new songs that no one has listened to) by
pre-training a multi-layered neural network on semantic tagging information as a content model
and using it as a prior in a collaborative filtering model. The proposed system shows comparably
better result than the state-of-the-art collaborative filtering approaches, in addition to the favorable
performance in the cold-start case.

1.3.2 Probabilistic models for recommender systems

Modeling user exposure in recommendation. We develop a probabilistic matrix factorization
model to capture the latent user exposure (whether or not a user is exposed to an item). In doing so,
we recover one of the most successful state-of-the-art approaches as a special case of our model (Hu
et al., 2008), and provide a plug-in method for conditioning exposure on various forms of exposure
covariates (e.g., topics in text, venue locations). In four datasets from various domains, we show that
our model outperforms existing benchmarks both with and without exposure covariates.

Causal inference for recommendation. We develop a causal inference approach to recommender
systems. We use inverse propensity weighting to correct for the bias which exists in observational
recommendation data. Through extensive empirical study, we demonstrate that this causal approach
to recommender systems leads to improved generalization to new data.

1.4 Related publications

The work presented in this dissertation is largely based on published articles in various conference
proceedings: Chapter 3 and Chapter 4 are based on papers presented in ISMIR 2014 (Liang et al.,
2014) and ISMIR 2015 (Liang et al., 2015), respectively. Chapter 5 is based on our paper presented in
WWW 2016 (Liang et al., 2016b). Chapter 6 is based on our paper which is currently in submission
(Liang et al., 2016a).
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Chapter 2

Background

In this chapter, we discuss some background knowledge and previous work helpful to understanding the
rest of the dissertation. Broadly speaking, we will make use of inference techniques for probabilistic
modeling, collaborative filtering method for recommender systems, and causal inference. We give a
high-level overview of the three fields and introduce some necessary definitions that will be used in
the subsequent chapters.

2.1 Probabilistic modeling and inference techniques

We begin by defining the general problem setup for probabilistic latent variable models. We observe
data x = {x1, . . . , xN}. We assume the data is generated stochastically by a model p(x | z, θ) that is
governed by some latent variables z = {z1, . . . , zN} as well as model parameters θ1. We can also
incorporate priors p(z, θ). We leave the dependency structure of prior generic. This class of models
covers a wide range of commonly used models, to name a few: mixture models, hidden Markov
models, probabilistic matrix factorization (Salakhutdinov and Mnih, 2008), and mixed-membership
models (e.g., latent Dirichlet allocation (Blei et al., 2003), and stochastic blockmodels (Airoldi et al.,
2008)).

Figure 2.1 demonstrates the graphical model representation for the general latent variable models
described above. Shaded nodes represent observed variables. Unshaded nodes represent hidden
(unobserved) variables. A directed edge from node a to node b denotes that the variable b depends on
the value of variable a. Plates denote replication by the value in the lower corner of the plate. We
use doted line to indicate that the dependency between model parameters θ and latent variables z are
optional – it depends on how the prior p(z, θ) is specified.

1The distinction between latent variables z and model parameters θ can be somewhat arbitrary. Here we follow the
convention that the dimensionality of the latent variables grows with the number of observations (hence both x and z are
indexed by n), while that of model parameters does not. Latent variables and model parameters loosely correspond to local
variables and global variables in Hoffman et al. (2013)
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xn

znθ

N

Figure 2.1: Graphical model representation for the general latent variable models.
Doted line is used to indicate that the dependency between model parameters θ and
latent variables z are optional – it depends on how the prior p(z, θ) is specified.

In Bayesian inference, the goal is to reason about the posterior distribution over the model parameters
and latent variables conditioned on the data, which is given by Bayes’ rule:

p(θ, z | x) = p(x | z, θ)p(z, θ)

p(x)
=

p(x | z, θ)p(z, θ)∫
θ

∫
z p(x | z, θ)p(z, θ)dz dθ

(2.1)

Through posterior inference, we are able to uncover the latent structure induced by the model. Except
in very simple models, posterior p(θ, z | x) is generally intractable to compute due to the normalizing
constant p(x) which requires computing the integral in the denominator of Eq. 2.1. In practice, people
normally resort to Markov chain Monte Carlo (mcmc) methods (Neal, 1993; Robert and Casella,
2013) to obtain samples from the posterior distribution to form a Monte Carlo estimator about the
predictive quantities. Despite the asymptotic guarantees, mcmc methods are generally unable to
analyze large-scale data. Scaling Bayesian inference to large-scale data is an active research area
(see Angelino et al. (2016) for an extensive survey). In Section 2.1.2, we will introduce variational
inference, a scalable deterministic alternative to mcmc.

Alternatively, it is also possible (and computationally simpler) to only obtain a point estimate of
the parameters of interest instead of reasoning about the entire posterior via maximum likelihood
estimation (MLE) or maximum a posteriori (MAP):

θMLE = arg max
θ

log p(x | θ) = arg max
θ

log
∫

z
p(x, z | θ)dz (2.2)

θMAP = arg max
θ

log p(θ, z | x) = arg max
θ

log
∫

z
p(θ, z, x)dz (2.3)

For models with latent variables, expectation-maximization (em) (Dempster et al., 1977) algorithm is
usually required to obtain these point estimates, which we will turn to next.

2.1.1 Parameter estimation via expectation-maximization

In this section, we introduce the em algorithm for parameter estimation. There exist different deriva-
tions of the algorithm in the literature. Here we choose to introduce it in the variational framework
to highlight its close connection to variational inference, which we will introduce in the following



2. Background 7

section. We derive the em algorithm for maximum likelihood estimation (Eq. 2.2) – it only requires
minor modification for maximum a posteriori (Eq. 2.3).

To obtain the maximum likelihood estimates, typically we write down the so-called observable
data log-likelihood log p(x | θ) and optimize it with respect to the model parameters θ. One of the
problems with directly optimizing the observable data log-likelihood for models with latent variables
z is that it requires to integrate over all the latent variables log

∫
z p(x, z | θ)dz, which is generally

intractable. As a workaround, we instead optimize the complete data log-likelihood log p(x, z | θ) by
introducing a variational distribution q(z) and applying Jensen’s inequality:

log p(x | θ) = log
∫

z
p(x, z | θ)dz

= log
∫

z
q(z)

p(x, z | θ)
q(z)

dz

≥
∫

z
q(z) log

p(x, z | θ)
q(z)

dz

= Eq [log p(x, z | θ)]−Eq [log q(z)] .

(2.4)

We obtain a lower bound of the log-likelihood log p(x | θ) that we are interested in optimizing. The
tightness of this bound depends on the variational distribution q(z). We could of course find out the
optimal q(z) by exploring when the equality holds for Jensen’s inequality. However, we will solve it
from a different angle here. We first explore the slack by applying Jensen’s inequality:

∆ = log p(x | θ)−
∫

z
q(z) log

p(x, z | θ)
q(z)

dz

=
∫

z
q(z) log p(x | θ)−

∫
z

q(z) log
p(x, z | θ)

q(z)
dz

=
∫

z
q(z) log

p(x | θ)q(z)
p(x, z | θ) dz

=
∫

z
q(z) log

q(z)
p(z | x, θ)

dz ≡ KL(qz‖pz | x,θ)

(2.5)

Thus, the difference is the Kullback-Leibler (kl) divergence between the variational distribution q(z)
and the posterior distribution p(z | x, θ). We can re-write the log-likelihood as:

log p(x | θ) = Eq [log p(x, z | θ)]−Eq [log q(z)]︸ ︷︷ ︸
L(q,θ)

+KL(qz‖pz | x,θ).

Since the kl-divergence KL(qz‖pz | x,θ) is non-negative and equals 0 only if q(z) = p(z | x, θ),
a.s., L(q, θ) acts as a tight lower-bound that equals log p(x | θ) when we set q(z) to p(z | x, θ). em
algorithm optimizes L(q, θ) by iteratively applying the following E(xpectation) and M(aximization)
steps:

E-step: By setting q(z) = p(z | x, θ), we obtain the optimal variational distribution, closing the gap
between log-likelihood log p(x | θ) and the lower bound L(q, θ).
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M-step: We have q(z) fixed from E-step and optimize L(q, θ) with respect to the model parameters
θ, which is equivalent to the following:

θnew = arg max
θ

Eq [log p(x, z | θ)] ,

since Eq [log q(z)] does not depend on θ.2 Unless we have reached a stationary point, the lower
bound L(q, θ) will increase with the new parameters θnew. The new parameters θnew will also make
the kl-divergence KL(qz‖pz | x,θ) greater than 0, which creates gap between the log-likelihood and
L(q, θ). This gap will be closed in the next E-step. Chapter 9 of Bishop (2006) provides a clear
illustrative demonstration of the em algorithm.

em algorithm is a typical example of coordinate ascent (Bertsekas, 1999), where in each E- and
M-step, we fix one of the variables of interest—θ in E-step and q(z) in M-step—and optimize with
respect to the other one.

2.1.2 Variational inference

Variational inference is a deterministic alternative to mcmc methods (Jordan et al., 1999; Wainwright
and Jordan, 2008; Blei et al., 2016). In Bayesian inference, we aim to reason about the posterior
p(z, θ | x) which is almost always intractable to compute. The basic idea behind variational inference
is to choose a tractable family of variational distributions q(z, θ) to approximate the intractable
posterior p(z, θ|x), so that the kl-divergence between the variational distribution and the true
posterior KL(qz,θ‖pz,θ | x) is minimized.

Variational inference turns the problem of Bayesian inference into a one of optimization, which
enables us to leverage the advances from optimization community, e.g., by making use of stochastic
optimization, we can scale variational inference to massive dataset (Hoffman et al., 2013).

To utilize variational inference for approximate Bayesian inference, we introduce the variational
distribution q(z, θ) and lower bound the marginal likelihood, similar to Eq. 2.4:

log p(x) = log
∫

z,θ
p(x, z, θ)dz dθ

≥ Eq [log p(x, z, θ)]−Eq [log q(z, θ)] , L.
(2.6)

Here the model parameters θ are treated the same as latent variables z with some pre-specified prior
p(z, θ).3 L is usually referred as evidence lower bound (elbo), since it is a lower bound of the model
evidence log p(x). Based on derivation similar to Eq. 2.5 (omitted for brevity), we can show that
optimizing elbo is equivalent to minimizing the kl divergence between the variational distribution
q(z, θ) and the posterior of interest p(z, θ | x). Once we obtain the approximating posterior that
minimizes the kl-divergence, we can use it as a proxy of the true posterior to form prediction.

So far we haven’t specified how to select the variational distribution q(z, θ). One popular choice
is the mean-field family which is completely factorized: q(z, θ) = (∏d qd(zd)) (∏i qi(θi)). With

2In principle, θnew does not have to fully optimize the objective Eq [log p(x, z, | θ)], as long as the new values increase it
(e.g., by taking a few gradient steps). This is referred as generalized em (Neal and Hinton, 1998).

3Variational inference can also be applied to the MLE/MAP case in Section 2.1.1 where we only marginalize out latent
variables z to obtain point estimates of model parameters θ. This happens in the E-step, when the posterior p(z | x, θ) is
intractable to compute exactly, which leads to the variational em algorithm (Beal, 2003).
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mean-field family, we can obtain the general form for the optimal variational distributions:

q∗d(zd) ∝ exp{Eq−d [log p(zd, x, z−d, θ)]}
q∗i (θi) ∝ exp{Eq−i [log p(θi, x, z, θ−i)]},

(2.7)

where z−d is used to index all of z except the dth dimension, and Eq−d [·] denotes taking expectation
with respect to everything except qd(zd). (θ−i and Eq−i [·] are similarly defined.)

For conditional conjugate model where the complete conditionals p(zd | x, z−d, θ) and p(θi | x, z, θ−i)
are in exponential family, the distributional form of Eq. 2.7 can be computed exactly. This leads to
the standard coordinate ascent variational inference algorithm: we iteratively set qd(zd) and qi(θi) to
its optimal form while keeping everything else fixed across the dimensions and repeat this procedure
until convergence.

2.2 Recommender systems

Making good recommendations is an important problem on the web. In the recommendation problem,
we observe how a set of users interacts with a set of items, and our goal is to show each user a set of
previously unseen items that she will like. Broadly speaking, recommender systems use historical data
to infer users’ preferences, and then use the inferred preferences to suggest items. Good recommender
systems are essential as the web grows; users are overwhelmed with choice.

2.2.1 Explicit and implicit feedback

Traditionally there are two modes of the recommendation problem: recommendation from explicit
data and recommendation from implicit data. With explicit data, users rate some items (positively,
negatively, or along a spectrum) and we can predict their missing ratings (the task of rating prediction,
popularized by the Netflix Prize4). This is called explicit data because users’ preferences are expressed
in an explicit fashion: positively rated items indicate types of items that they like; negatively rated
items indicate items that they do not like. For explicit data, it is enough to only use the rated items to
infer a user’s preferences as we have both positive and negative examples. Explicit data is of great
value, but it is often difficult to obtain.

In implicit data, each user expresses a binary decision about items5—for example this can be clicking,
purchasing, viewing—and we aim to predict unclicked items that she would want to click on. (We
use the verb “click” throughout this dissertation for concreteness; this can be any type of interaction,
including “download,” “purchase,” “listen,” or “watch.”) Unlike ratings data, implicit data is easily
accessible. While ratings data requires action on the part of the users, implicit data is often a natural
byproduct of their behavior, e.g., browsing histories, click logs, and past purchases. Despite the ease
of access, implicit data is inherently noisy, as users’ preferences are expressed through implicit actions
and we only observe positive signals: we know users click on items they like, but we do not know

4http://www.netflixprize.com/
5In principle, implicit data can go beyond binary: For example, the number of times a user listened to certain songs can

also be considered as implicit feedback. However, in practice we find that the binary indicator of interaction tends to carry the
most signal.

http://www.netflixprize.com/
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why an item is unclicked. We will explore recommender systems for both implicit and explicit data in
this dissertation in Chapter 5 and Chapter 6, respectively.

2.2.2 Collaborative filtering for recommender systems

Collaborative filtering is the workhorse of recommender systems. It is widely used inmany commercial
websites, e.g., Amazon uses various collaborative filtering algorithms to suggest products (“Customers
Who Bought This Item Also Bought”), and Netflix uses collaborative filtering algorithms extensively
in their homepage to suggest new movies and TV shows to watch.

Collaborative filtering analyzes user preferences for items by exploiting the similarity patterns across
users. There are two major classes of collaborative filtering algorithms: neighborhood-based model
(Sarwar et al., 2001) and the matrix factorization model (Koren et al., 2009). In this dissertation, we
will mainly focus on the matrix factorization for collaborative filtering.

2.2.2.1 Matrix factorization for collaborative filtering

User-item preference data, whether explicit or implicit, can be encoded in a user by item matrix.
Throughout this dissertation, a user is indexed by u ∈ {1, . . . , U}, an item is indexed by i ∈ {1, . . . , I},
and we will refer to this user by item matrix as the click matrix or the interaction matrix. Given the
observed entries in this matrix {yui : (u, i) ∈ O}, the recommendation task is often framed as filling
in the unobserved entries. Matrix factorization models, which infer (latent) user preferences and
item attributes by factorizing the click matrix, are standard in recommender systems (Koren et al.,
2009).

Figure 2.2 demonstrates the basic idea behind matrix factorization for collaborative filtering.6 In
this illustrative example, we have three users and three items, where each user consumes only one
item. Matrix factorization aims to find a latent space to embed all of the users and items. If a user
consumes an item, this user and item pair will be embedded closer in this latent space. The locations
(coordinates) in this latent space correspond to the user and item latent factors obtained by factorizing
the click matrix. To make recommendations for each user, we select the unconsumed items which
have high dot products with the user’s latent factor.

How would this work? Consider a metalhead who has listened to a lot of Metallica but not Iron
Maiden. It is reasonable to assume that there are many other users with similar tastes listened to songs
from both bands, which makes the latent factors for songs by bothMetallica and Iron Maiden very
close in the latent space. Therefore, when making recommendations for this user, the songs from
Iron Maiden will likely have higher dot products, which will be recommended by the learned matrix
factorization model.

From a generative modeling perspective, the model can be understood as first drawing user and item
latent factors corresponding, respectively, to user preferences and item attributes. Then drawing
observations from a specific distribution (e.g., a Poisson or a Gaussian) with its mean parametrized
by the dot product between the user and the item factors. Formally, Gaussian matrix factorization is

6This figure is only an illustrative example: typical matrix factorization models use inner products, not Euclidean distance,
to measure similarity.
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Items

Users

Figure 2.2: An illustrative example of matrix factorization for collaborative filtering.
Matrix factorization aims to find a latent preference space to embed both users and
items such that if a user consumes an item, they will be embedded closer in this
latent space.

(Salakhutdinov and Mnih, 2008):

θu ∼ N (0, λ−1
θ IK) for u = 1, . . . , U,

βi ∼ N (0, λ−1
β IK) for i = 1, . . . , I,

yui ∼ N (θ>u βi, λ−1
y ) for (u, i) ∈ O,

(2.8)

where θu and βi represent user u’s latent preferences and item i’s attributes respectively. We use the
mean and (co)variance to parametrize the Gaussian distribution. λθ , λβ, and λy can be treated as
hyperparameters, or be given priors for a full Bayesian treatment. IK stands for the identity matrix of
dimension K. A graphical model representation of the Gaussian matrix factorization model is shown
in Figure 2.3.

We derive coordinate updates to obtain the maximum a posteriori estimates of the Gaussian matrix
factorization model, as they are closely related to the model inference we develop in the later chapters.
Since we are only obtaining point estimates of the model parameters, we can always scale λθ and
λβ by λy to obtain the same solution. Without loss of generality, we set λy = 1. The complete
log-likelihood of the model is:
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λy

λθ
λβ
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U

Figure 2.3: Graphical model representation for the Gaussian matrix factorization.

L = − ∑
(u,i)∈O

1
2
(yui − θ>u βi)

2 − λθ

2 ∑
u
‖θu‖2

2 −
λβ

2 ∑
i
‖βi‖2

2. (2.9)

As we can see, the maximum a posteriori estimates of the Gaussian matrix factorization model is
equivalent to the solution of minimizing the squared loss between the estimated and actual preferences
∑(u,i)∈O(yui − θ>u βi)

2 with `2 regularization on the latent factors.

The basic idea of the coordinate updates for the Gaussian matrix factorization model is to only update
one of the user or item factor (θu or βi) at a time when keeping everything else fixed. Taking the
gradient of the complete log-likelihood (Eq. 2.9) with respect to one of the latent factors and setting it
to 0, we obtain the following updates:

θnew
u ← ( ∑

i:(u,i)∈O
βiβ
>
i + λθIK)

−1( ∑
i:(u,i)∈O

yuiβi) (2.10)

βnew
i ← ( ∑

u:(u,i)∈O
θuθ>u + λβIK)

−1( ∑
u:(u,i)∈O

yuiθu) (2.11)

Every single update resembles that of ridge regression (Hastie et al., 2009) where the responses are
yui and the covariates are the latent factors. Therefore, the coordinate updates for the Gaussian matrix
factorization is often called alternating least squares (ALS). The full algorithm is summarized in
Algorithm 1. Note that the updates are embarrassingly parallelizable across users and items.

2.2.2.2 Collaborative filtering for implicit data

The model described in Eq. 2.8 can be equally applied to both explicit and implicit data. The real
difference is how to define the observed set O: For explicit data, it can simply be the user-item pairs
where user u has clicked on (rated) item i. However, we can not copy the same definition for implicit
data. The reason is that the data is binary and thus, when inferring a user’s preferences, we must use
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Algorithm 1: ALS Alternating least squares for the Gaussian matrix factorization

Input: A set of observed entires in the click matrix {yui : (u, i) ∈ O}, regularization parameters λθ

and λβ

Output: A set of user latent factors θ1:U and item latent factors β1:I
Randomly initialize θ1:U , β1:I
while not converged do

for u← 1 to U do
Update user factor θu (Eq. 2.10)

end
for i← 1 to I do

Update item factor βi (Eq. 2.11)
end

end
return θ1:U , β1:I

unclicked items (otherwise, it would be like training a classifier with only positive labels7), i.e., O
contains all the entires in the click matrix.

Mirroring methods for explicit data, many methods treat unclicked items as those a user does not like.
But this assumption is mistaken, and overestimates the effect of the unclicked items. Some of these
items—many of them, in large-scale settings—are unclicked because the user didn’t see them, rather
than because she chose not to click them. This is the crux of the problem of analyzing implicit data:
we know users click on items they like, but we do not know why an item is unclicked.

Weighted matrix factorization (wmf), the standard factorization model for implicit data, selectively
downweights evidence from the click matrix (Hu et al., 2008). wmf uses a simple heuristic where
all unobserved user-item interactions are equally downweighted vis-a-vis the observed interactions.
Under wmf an observation is generated from:

yui ∼ N (θ>u βi, c−1
yui

),

where the “confidence” c is set such that c1 > c0. This dependency between a click and itself is
unorthodox; because of it wmf is not a generative model. As we will describe in Chapter 5 we obtain
a proper generative model by adding an exposure latent variable.

The maximum a posteriori estimates of wmf can also be obtained via ALS with minor modification.
For notational convenience, we define cui , cyui . The complete log-likelihood for wmf is (recall that
observed set O contains all the entries in the click matrix):

L = −∑
u,i

cui
2
(yui − θ>u βi)

2 − λθ

2 ∑
u
‖θu‖2

2 −
λβ

2 ∑
i
‖βi‖2

2

7Recommendation from implicit data is also known as one-class collaborative filtering (Pan et al., 2008).
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Again, we take the gradient with respect to one of the factors and set it to 0, which leads to the
following ALS updates:

θnew
u ← (∑

i
cuiβiβ

>
i + λθIK)

−1(∑
i

cuiyuiβi) (2.12)

βnew
i ← (∑

u
cuiθuθ>u + λβIK)

−1(∑
u

cuiyuiθu) (2.13)

However, unlike Eq. 2.10 and Eq. 2.11, the summation inside of the matrix inversion is over all the
users or items, which can be computationally challenging, especially considering that we will have to
do this computation for every single factor update (there are in total U + I factors to be updated in
one iteration). Hu et al. (2008) propose a clever trick to speed up the computation substantially by
breaking up the summation into two parts as follows (here we only demonstrate the case for updating
the user factor θu, the same can be applied to item factor βi):

(∑
i

cuiβiβ
>
i + λθIK)

−1(∑
i

cuiyuiβi)

= (∑
i
(cui − c0)βiβ

>
i + ∑

i
c0βiβ

>
i + λθIK︸ ︷︷ ︸

precompute once per iteration

)−1(∑
i

cuiyuiβi).

The second part∑i c0βiβ
>
i +λθIK is shared across all the user factor updates, thus can be precomputed

once per iteration. The first part ∑i(cui − c0)βiβ
>
i can be efficiently computed because cui − c0

is non-zero only when yui = 1 and normally the click matrix is highly sparse. Furthermore, just
like ALS for the Gaussian matrix factorization, all the updates are embarrassingly parallelizable
across users and items. The full algorithm of ALS for wmf is summarized in Algorithm 2. With the
speed-up trick and embarrassing parallelization, ALS for wmf can be easily applied to datasets with
millions of users and items.

wmf treats the collaborative filtering problem with implicit data as a regression problem. Concretely,
consumed user-item pairs are assigned a value of one and unobserved user-item pairs are assigned a
value of zero. Bayesian personalized ranking (BPR) (Rendle et al., 2009; Rendle and Freudenthaler,
2014) instead treats the problem as a one of ranking consumed user-item pairs above unobserved
pairs. In a similar vein, the weighted approximate-ranking pairwise (WARP) loss proposed in Weston
et al. (2011) approximately optimizes Precision@k. To deal with the non-differentiable nature of the
ranking loss, these methods typically design specific (stochastic optimization) methods for parameter
estimation.

2.3 Causal inference

Causal inference is aiming to answer the cause-and-effect question: does X cause Y? If so, how much
is the effect of X on Y? Causal inference helps us learn about how things work and predict what
happens when certain things change (Morgan and Winship, 2014; Imbens and Rubin, 2015). In this
section, we review some basic concepts of causal inference that will be used in the later chapters of
this dissertation when we make a connection between causal inference and recommendation.
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Algorithm 2: W-ALS Alternating least squares for wmf

Input: Click matrix yui, the confidence for clicked c1 and unclicked c0, regularization parameters λθ

and λβ

Output: A set of user latent factors θ1:U and item latent factors β1:I
Randomly initialize θ1:U , β1:I
while not converged do

Precompute ∑i c0βiβ
>
i + λθIK

for u← 1 to U do
Update user factor θu (Eq. 2.12)

end
Precompute ∑u c0θuθ>u + λβIK
for i← 1 to I do

Update item factor βi (Eq. 2.13)
end

end
return θ1:U , β1:I

2.3.1 Potential outcome framework

The potential outcome framework of causal inference (Rubin, 1974) is the most widely used causality
formulation. We use random variable A = a as an indicator of treatment assignment and assume
the treatment is binary, i.e., a is either 1 (assigned the treatment) or 0 (not assigned the treatment).
In this framework, each individual has two potential outcomes Y(a) depending on the value of a.
For example, in a medical trial, for each patient, we assume there is a potential outcome Y(1) if she
receives the treatment and Y(0) if she receives the placebo.

One measurement of the causal effect is the average difference (over individuals) between those
potential outcomes. It is formally formulated as the average treatment effect (ate): E [δ] =
E [Y(1)]−E [Y(0)], where the expectation is taken over the whole population of interest. In the
language of graphical models (Pearl, 2009), this is framed as evaluating the impact of an intervention
on random variables in a probabilistic graph. The difficulty of causal inference is that we can only
observe one realization of all the potential outcomes Y(a), for a ∈ {0, 1}.

2.3.2 Randomized experiments and observational studies

There are two types of data commonly encountered in causal analysis: data collected from randomized
experiments and data collected from observational studies.

Randomized experiments are the experiments that each unit receives treatment randomly (e.g., a
medical trial where a random proportion of patients receives treatment). They allow the great reliability
and validity of statistical estimates of causal effects. A naive ate estimator of the difference between
the treated and untreated with data from randomized experiments is unbiased. Such data is of great
quality, but sometimes it is impossible to obtain.



16 2.3 Causal inference

Observational data, on the other hand, is collected from an observational study where we have
no control over the assignment mechanism. This can happen when it is impractical to perform a
randomized experiment (e.g., for ethical reasons) or when we cannot control the data collecting
process. Special care is required when making causal statement with observational data, since the
naive ate estimator is generally biased. Despite such difficulty, observational data is easily accessible
comparing to data collected from randomized experiments.

If we treat recommending an item to a user as assigning a treatment, the data collected from a typical
recommender system is an example of observational data. We leverage this connection in Chapter 6
to develop a causal inference approach to recommendation.
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Chapter 3

Scalable Music Tagging with Poisson
Factorization

Automatic music tagging is an important but challenging problem within Music Information Retrieval
(mir). In this chapter, we treat music tagging as a matrix completion problem. We apply the
Poisson matrix factorization model jointly on the vector-quantized audio features and a “bag-of-tags”
representation. This approach exploits the shared latent structure between semantic tags and acoustic
codewords. Leveraging the stochastic variational inference, the model can tractably analyze massive
music collections. We present experimental results on the CAL500 dataset and the Million Song
Dataset for both annotation and retrieval tasks, illustrating the steady improvement in performance as
more data is used.

3.1 Introduction

Automatic music tagging is the task of analyzing the audio content (waveform) of a music recording
and assigning to it human-relevant semantic tags (Turnbull et al., 2008) – which may relate to style,
genre, instrumentation, or more subtle aspects of the music, such as those contributed by users on
social media sites. Such “autotagging” (Eck et al., 2007) relies on labeled training examples for each
tag, and performance typically improves with the number of training examples consumed, although
training schemes also take longer to complete. In the era of “Big Data”, it is necessary to develop
models which can rapidly handle massive amount of data; a starting point for music data is the Million
Song Dataset (Bertin-Mahieux et al., 2011), which includes user tags from Last.fm.

In this chapter, we treat the automatic music tagging as a matrix completion problem, and use the
techniques of stochastic variational inference to be able to learn from large amounts of data presented
in an online fashion (Hoffman et al., 2013). The “matrix completion” problem treats each track as a
row in a matrix, where the elements describe both the acoustic properties (represented, for instance,
as a histogram of occurrences of vector-quantized acoustic features) and the relevance of a large
vocabulary of tags (we describe the details about data representation in Section 3.2): We can regard
the tag information as incomplete or missing for some of the rows, and seek to “complete” these rows
based on information inferred from the complete, present rows.
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3.1.1 Related work

There have been a large number of papers on automatic tagging of music audio in recent years. In
addition to the papers mentioned above, work particularly relevant to this paper includes the Codeword
Bernoulli Average (CBA) approach of Hoffman et al. (2009), which uses a similar vector-quantization
(VQ) histogram representation of the audio to build a simple but effective probabilistic model for each
tag in a discriminative fashion. Xie et al. (2011) directly fits a regularized logistic regression model
to the normalized acoustic codeword histograms to predict each tag and achieves state-of-the-art
results, and Ellis et al. (2013) further improves tagging accuracy by employing multiple generative
models that capture different characteristics of a music piece, which are combined in an optimized
“bag-of-systems”.

Much of the previous work has been performed on the CAL500 dataset (Turnbull et al., 2008) of 502
Western popular music tracks that were carefully labeled by at least three human annotators with
their relevance to 149 distinct labels spanning instrumentation, genre, emotions, vocal characteristics,
and use cases. This small dataset tends to reward approaches that can maximize the information
extracted from the sparse data regardless of the computational cost. A relatively larger dataset in this
domain is CAL10k (Tingle et al., 2010) with over 10,000 tracks described by over 500 tags, mined
from Pandora’s website1. However, neither of these datasets can be considered industrial scale, which
implies handling millions of tracks and tens of thousands of tags.

Matrix factorization techniques, in particular, nonnegative matrix factorization (nmf), have been
widely used to analyze music signals (Hoffman et al., 2010; Liang et al., 2013) in the context of source
separation. Paisley et al. (2015) derived scalable Bayesian nmf for topic modeling, which we develop
here. To our knowledge, this is the first application of matrix factorization to VQ acoustic features for
automatic music tagging.

3.2 Data representation

We first describe the data that is used in the matrix completion problem. For our automatic tag-
ging system, the data comes from two sources: vector-quantized audio features and a “bag-of-tags”
representation.

• Vector-quantized audio features. Instead of directly working with audio features, we vector
quantize all the features following the standard procedure: We run the k-means algorithm on
a subset of randomly selected training data to learn J cluster centroids (codewords). Then
for each song, we assign each frame to the cluster with the smallest Euclidean distance to the
centroid. We form the VQ feature yVQ ∈NJ by counting the number of assignments to each
cluster across the entire song.

• Bag-of-tags. Similar to the bag-of-words representation, which is commonly used to represent
documents, we represent the tagging information (whether or not the tag applies to a song) with
a binary bag-of-tags vector yBoT ∈ {0, 1}|V|, where V is the set of all tags.

For each song, we will simply concatenate the VQ feature yVQ and the bag-of-tags vector yBoT, thus
the dimension of the data is D = J + |V|. Figure 3.1 demonstrates the workflow of the proposed
automatic tagging system. The data (left) consists of both acoustic features and bag-of-tags vectors.

1http://www.pandora.com/

http://www.pandora.com/
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Figure 3.1: The workflow of the proposed automatic tagging system. The data (left)
consists of both acoustic features and bag-of-tags vectors. When we apply the matrix
factorization model to this data, the latent factors we learn (rightmost) will exploit
the shared latent structure between semantic tags and acoustic codewords.

When we apply the matrix factorization model to this data, the latent factors we learn (rightmost) will
exploit the shared latent structure between semantic tags and acoustic codewords. Therefore, we can
utilize the shared latent structure to predict tags when only given the audio features.

3.3 Poisson matrix factorization

We adopt the notational convention that bold letters (e.g. y, θ, β) denote matrices. i ∈ {1, · · · , I} is
used to index songs. d ∈ {1, · · · , D} is used to index feature dimensions. k ∈ {1, · · · , K} is used to
index latent factors from the matrix factorization model. Given the data y ∈NI×D as described in
Section 3.2, the Poisson matrix factorization model is formulated as follows:

θik ∼ Gam(a, ac),
βkd ∼ Gam(b, b),

yid ∼ Pois(
K

∑
k=1

θikβkd),

(3.1)

where βk , [βk1, . . . , βkD]
> ∈ RD

+ denote the kth latent factor and θi , [θi1, . . . , θiK]
> ∈ RK

+
denote the weights for song i. a and b are model hyperparameters. c is a scalar on the weights that we
tune to maximize the likelihood. A graphical model representation for the Poisson matrix factorization
is shown in Figure 3.2.

There are a couple of reasons to choose a Poisson model over a more traditional Gaussian model
(Salakhutdinov and Mnih, 2008). First, the Poisson distribution is a more natural choice to model
count data. Secondly, real-world tagging data is extremely noisy and sparse. If a tag is not associated
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yid

θik βkd

K

D

I

Figure 3.2: Graphical model representation for the Poisson matrix factorization.

with a song in the data, it could be either because that tag does not apply to the song, or simply because
no one has labeled the song with the tag yet. The Poisson matrix factorization model has the desirable
property that it does not penalize values of 0 as strongly as the Gaussian distribution (Paisley et al.,
2015; Gopalan et al., 2015). Therefore, even weakly labeled data can be used to learn the Poisson
model.

3.4 Variational inference

To learn the latent factors β and the corresponding decomposition weights θ from the training data y,
we need to compute the posterior distribution p(θ, β|y). However, no closed-form expression exists
for this hierarchical model. We therefore employ mean-field variational inference to approximate this
posterior as described in Section 2.1.2.

We choose a fully-factorized family of variational distributions,

q(θ, β) =
K

∏
k=1

( I

∏
i=1

qik(θik)
)( D

∏
d=1

qkd(βkd)
)

,

to approximate the posterior p(θ, β|y), so that the kl-divergence between the variational distribution
and the true posterior is minimized. Following a further approximation discussed in the next section,
the factorized distribution allows for a closed-form expression of this variational objective, and thus
tractable inference. Here we choose variational distributions from the same family as the prior (we
use the shape and rate parametrization for gamma distribution):

qik(θik) = Gam(θik; γik, χik),
qkd(βkd) = Gam(βkd; νkd, λkd).

Minimizing the kl-divergence is equivalent to maximizing the following variational objective
(elbo):

L = Eq [ln p(y, θ, β)] + H(q),

where H(q) is the entropy of the variational distribution q. We can optimize the variational objective
using coordinate ascent via two approaches: batch inference, which requires processing of the entire
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dataset for every iteration; or stochastic inference, which only needs a small batch of data for each
iteration and can be potentially scale to much larger datasets where batch inference is no longer
computationally feasible.

3.4.1 Batch inference

Although the model in Eq. 3.1 is not conditionally conjugate by itself, as demonstrated in Cemgil
(2009), we can introduce latent auxiliary random variables zidk ∼ Poisson(θikβkd) (yid = ∑k zidk)
with the variational distribution being q(zidk) = Mult(zid; φid), where zid ∈ NK, φidk ≥ 0 and
∑k φidk = 1. This makes the model conditionally conjugate, which means that closed-form coordinate
ascent updates are available.

Following the standard results of variational inference for conditionally conjugate model (e.g. Hoffman
et al. (2013)), we can obtain the updates for θik:

γik = a +
D

∑
d=1

yidφidk,

χik = ac +
D

∑
d=1

Eq [βkd] .

(3.2)

The scale c is updated as:

c−1 =
1

IK ∑
i,k

Eq[θik].

Similarly, we can obtain the updates for βkd:

νkd = b +
I

∑
i=1

yidφidk,

λkd = b +
I

∑
i=1

Eq[θik].

(3.3)

Finally, for the auxiliary variables zidk, the following update is applied:

φidk ∝ exp{Eq[ln θikβkd]}.

Note that this update should be applied after either updating θik or βkd. The necessary expectations
for θik are:

Eq[θik] = γik/χik,

Eq[ln θik] = ψ(γik)− ln χik,

where ψ(·) is the digamma function. The expectations for βkd have the same form, but use νkd and
λkd. The full algorithm of batch inference for the Poisson matrix factorization is summarized in
Algorithm 3.
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Algorithm 3: BatchVI Batch variational inference for the Poisson matrix factorization

Input: Acoustic features and bag-of-tags vectors y, hyperparameters a and b
Output: Variatioanl parameters γ, χ, ν, λ
Randomly initialize variational parameters γ, χ, ν, λ
while not converged do

for (i, d) : yid > 0 do
for k← 1 to K do

Update auxiliary variables φidk ∝ exp{Eq[ln θikβkd]}.
end

end
for i← 1 to I do

for k← 1 to K do
Update variational parameters γik and χik for weights θik (Eq. 3.2)

end
end
Update scale c−1 = 1

IK ∑i,k Eq[θik]
for (i, d) : yid > 0 do

for k← 1 to K do
Update auxiliary variables φidk ∝ exp{Eq[ln θikβkd]}.

end
end
for d← 1 to D do

for k← 1 to K do
Update variational parameters νkd and λkd for latent factors βkd (Eq. 3.3)

end
end

end
return γ, χ, ν, λ

3.4.2 Stochastic inference

Batch inference will alternate between updating θ and β using the entire data at each iteration until
convergence to a local optimum, which could be computationally intensive for large datasets. We
can instead adopt stochastic optimization by selecting a subset (mini-batch) of the data at iteration
t, indexed by Bt ⊂ {1, · · · , I}, and optimizing over a noisy version of the variational objective
L:

Lt =
I
|Bt| ∑

i∈Bt

Eq [ln p(yi, θi|β)] + Eq [ln p(β)] + H(q). (3.4)

By optimizing Lt, we are optimizing L in expectation.

The updates for weights θik and auxiliary variables zidk are essentially the same as those of batch
inference, except that now we are only inferring weights for the mini-batch of data for i ∈ Bt. The
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optimal scale c is updated accordingly:

c−1 =
1
|Bt|K ∑

i∈Bt ,k
Eq[θik].

After alternating between updating weights θik and latent variables zidk until convergence, we can take
a gradient step, preconditioned by the inverse Fisher information matrix of variational distribution
qkd(βkd), to optimize βkd (see Hoffman et al. (2013) for more technical details),

ν
(t)
kd = (1− ρt)ν

(t−1)
kd + ρt

(
b +

I
|Bt| ∑

i∈Bt

yidφidk

)
,

λ
(t)
kd = (1− ρt)λ

(t−1)
kd + ρt

(
b +

I
|Bt| ∑

i∈Bt

Eq[θik]

)
,

where ρt > 0 is a step size at iteration t. To ensure convergence (Bottou, 1998), the following
conditions must be satisfied:

∑∞
t=1 ρt = ∞, ∑∞

t=1 ρ2
t < ∞.

One possible choice of ρt is ρt = (t0 + t)−κ for t0 > 0 and κ ∈ (0.5, 1]. It has been shown (Hoffman
et al., 2013) that this update corresponds to stochastic optimization with a natural gradient step, which
better fits the geometry of the parameter space for probability distributions. The full algorithm for
stochastic variational inference is summarized in Algorithm 4. Note that unlike Algorithm 3 where
the variational parameters for weights γ and χ are also returned, here we only return the learned
variational parameters for latent factors ν and λ to demonstrate the “online” natural of the stochastic
variational inference algorithm: the data is processed in mini-batches and there is no need to keep
track of any old data that has been already analyzed.

3.4.3 Generalizing to new songs

Once the latent factor β ∈ RK×D
+ is inferred, we can naturally divide it into two blocks: the VQ

part βVQ ∈ R
K×J
+ , and the bag-of-tags part βBoT ∈ R

K×|V|
+ . See the rightmost of Figure 3.1 for an

illustration.

Given a new song, we can first obtain the VQ feature yVQ and fit it with βVQ to compute posterior
of the weights p(θ|yVQ, βVQ). We can approximate this posterior with the variational inference
algorithm in Section 3.4.1 with β fixed. Then to predict tags, we can compute the expectation of the
dot product between the weights θ and βBoT under the variational distribution:

ŷBoT = Eq

[
θT βBoT

]
. (3.5)

Since for different songs the weights θ may be scaled differently, before computing the dot product
we normalize Eq [θ] so that it lives on the probability simplex. To do automatic tagging, we could
annotate the song with top M tags according to ŷBoT. To compensate for a lack of diversity in the
annotations, we adopt the same heuristic used in Hoffman et al. (2009) by introducing a “diversity
factor” d: For each predicted score, we subtract d times the mean score for that tag. In our system, we
set d = 3.
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Algorithm 4: SVI Stochastic variational inference for the Poisson matrix factorization

Input: Acoustic features and bag-of-tags vectors y, hyperparameters a, b, t0, κ, and mini-batch size
Output: Variatioanl parameters ν, λ
Randomly initialize variational parameters ν, λ
for t← 1, . . . do

Subsample a mini-batch of data Bt
while not converged do

for (i, d) : i ∈ Bt and yid > 0 do
for k← 1 to K do

Update auxiliary variables φidk ∝ exp{Eq[ln θikβkd]}.
end

end
for i ∈ Bt do

for k← 1 to K do
Update variational parameters γik and χik for weights θik (Eq. 3.2)

end
end
Update scale c−1 = 1

|Bt |K ∑i∈Bt ,k Eq[θik]

end
Set step size ρt = (t0 + t)−κ

for d← 1 to D do
for k← 1 to K do

Take natural gradient steps for latent factors:

ν
(t)
kd = (1− ρt)ν

(t−1)
kd + ρt

(
b + I

|Bt | ∑i∈Bt yidφidk

)
λ
(t)
kd = (1− ρt)λ

(t−1)
kd + ρt

(
b + I

|Bt | ∑i∈Bt Eq[θik]

)
end

end
end
return ν, λ
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3.5 Evaluation

We evaluate the model’s performance on an annotation task and a retrieval task using CAL500
(Turnbull et al., 2008) and Million Song Dataset (MSD) (Bertin-Mahieux et al., 2011). Unlike the
CAL500 dataset where tracks are carefully-annotated, the Last.fm dataset associated with MSD comes
from real-world user tagging, and thus contains only weakly labeled data with a tagging vocabulary
that is much larger and more diverse.

We compare our results on these tasks with two other sets of codebook-based methods: Codeword
Bernoulli Average (CBA) (Hoffman et al., 2009) and `2-regularized logistic regression (Xie et al.,
2011). Like the Poisson matrix factorization model, both methods are easy to train and can scale to
relatively large dataset on a single machine. However, since both methods perform optimization in a
batch fashion, we will later refer to them as “batch algorithms”, along with the Poisson model with
batch inference described in Section 3.4.1.

For the hyperparameters of the Poissonmatrix factorizationmodel, we set a = b = 0.1, and the number
of latent factors K = 100. To learn the latent factors β, we followed the procedure in Algorithm 3 for
batch inference until the relative increase on the elbo is less than 0.05%. For stochastic inference,
we followed the procedure in Algorithm 4 and used a mini-batch size |Bt| = 1, 000 unless otherwise
specified and took a full pass of the randomly permuted data. As for the learning rate, we set t0 = 1
and κ = 0.6. All the source code in Python is available online2.

3.5.1 Annotation task

The purpose of annotation task is to automatically tag unlabeled songs. To evaluate the model’s ability
for annotation, we computed the average per-tag precision, recall, and F-score on a test set. Per-tag
precision is defined as the average fraction of songs that the model annotates with tag v that are
actually labeled v. Per-tag recall is defined as the average fraction of songs that are actually labeled v
that the model also annotates with tag v. F-score is the harmonic mean of precision and recall, and is
one overall metric for annotation performance.

3.5.2 Retrieval task

The purpose of the retrieval task is, when given a query tag v, to provide a list of songs which are
related to tag v. To evaluate the models’ retrieval performance, for each tag in the vocabulary we
ranked each song in the test set by the predicted score from Eq. 3.5. We evaluated the area under
the receiver-operator curve (AROC) and mean average precision (MAP) for each ranking. AROC is
defined as the area under the curve, which plots the true positive rate against the false positive rate,
and MAP is defined as the mean of the average precision (AP) for each tag, which is the average of
the precisions at each possible level of recall.

2http://github.com/dawenl/stochastic_PMF

http://github.com/dawenl/stochastic_PMF
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Model Prec Recall F-score AROC MAP

CBA 0.41 0.24 0.29 0.69 0.47
`2 LogRegr 0.48 0.26 0.34 0.72 0.50
PMF-Batch 0.42 0.23 0.30 0.67 0.45

Table 3.1: Results for the top 78 popular tags on CAL500, for Codeword Bernoulli
Average (CBA), `2 regularized logistic regression (`2 LogRegr), and Poisson matrix
factorization with batch inference (PMF-Batch). The results for CBA and `2 LogRegr
are directly copied from Xie et al. (2011).

3.5.3 Results on CAL500

Following the procedure similar to that described in Hoffman et al. (2009); Xie et al. (2011), we
performed a 5-fold cross-validation to evaluate the annotation and retrieval performance on CAL500.
We selected the top 78 tags, which are annotated more than 50 times in the dataset, and learned a
codebook of size J = 2000. For the annotation task, we labeled each song with the top 10 tags based
on the predicted score. Since CAL500 is a relatively small dataset, we only performed batch inference
for the Poisson matrix factorization model.

The results are reported in Table 3.1, which shows that the Poisson model has comparable performance
on the annotation task, and does slightly worse on the retrieval task. As mentioned in Section 3.3, the
Poisson matrix factorization model is particularly suitable for noisy and sparse data where 0’s are not
necessarily interpreted as explicit observations. However, this may not be the case for CAL500, as
the vocabulary was well-chosen and the data was collected from a survey where the tagging quality
is understandably higher than the actual tagging data in the real world, like the one from Last.fm.
Therefore, this task cannot fully exploit the advantage brought by the Poisson model. Meanwhile, the
amount of data in CAL500 is fairly small – the data y fit to the model is simply a 502-by-2078 matrix.
This prevents us from adopting stochastic inference, which will be shown being much more effective
than batch inference even on a 10,000-song dataset in Section 3.5.4.

3.5.4 Results on MSD

To demonstrate the scalability of the Poisson matrix factorization model, we conducted experiments
using MSD and the associated Last.fm dataset. To our knowledge, there has not been any previous
work where music tagging results are reported on the MSD.

Since the Last.fm dataset contains 522,366 unique tags, it is not realistic to build the model with all of
them. We first selected the tags with more than 1,000 appearances and removed those which do not
carry discriminative information (e.g. “my favorite”, “awesome”, “seen live”, etc.). Then we ran the
stemming algorithm implemented in NLTK3 to further reduce the potential duplications and correct
for alternate spellings (e.g. “pop-rock” v.s. “pop rock”, “love song” v.s. “love songs”), which gave
us a vocabulary of 561 tags. Using the default train/test artist split from MSD, we filtered out the
songs which have been labeled with tags from the selected vocabulary. This gave us 371,209 songs
for training. For test set, we further selected those which have at least 20 tags (otherwise, it is likely

3http://www.nltk.org/

http://www.nltk.org/
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Figure 3.3: Improvement in performance with the number of mini-batches consumed
for the PMF-Stoc-full system with J = 512. Red lines indicate the performance of
PMF-Batch which is trained on 10k examples; that system’s performance is exceeded
after fewer than 5 mini-batches.

that this song is very weakly labeled). This gave us a test set of 2,757 songs. The feature we used is
the Echo Nest’s timbre feature, which is very similar to MFCC.

We randomly selected 10,000 songs as the data which can fit into the memory nicely for all the batch al-
gorithms, and trained the following models with different codebook sizes J ∈ {256, 512, 1024, 2048}:
Codeword Bernoulli Average (CBA), `2-regularized logistic regression (`2 LogRegr), Poisson matrix
factorization with batch inference (PMF-Batch) and stochastic inference by a single pass of the data
(PMF-Stoc-10K). Here we used batch size |Bt| = 500 for PMF-Stoc-10K, as otherwise there will
only be 10 mini-batches from the subset. However, given enough data, in general larger batch size
will lead to relatively superior performance, since the variance of the noisy variational objective in
Eq. 3.4 is smaller. To demonstrate the effectiveness of the Poisson model on massive amount of data
(exploiting the stochastic algorithm’s ability to run without loading the entire dataset into memory),
we also trained the model with the full training set with stochastic inference (PMF-Stoc-full). For the
annotation task, we labeled each song with the top 20 tags based on the predicted score.

The results are reported in Table 3.2. In general, the performance of Poisson matrix factorization
is comparably better for smaller codebook size J. Specifically, for stochastic inference, even if the
amount of training data is relatively small, it is not only significantly faster than batch inference, but can
also help improve the performance by quite a large margin. Finally, not surprisingly, PMF-Stoc-full
dominates all the metrics, regardless of the size of the codebook, because it is able to learn from more
data.

Figure 3.3 illustrates how the metrics improve as more data becomes available for the Poisson matrix
factorization model, showing how the F-score, AROC, and MAP improve with the number of (1000-
element) mini-batches consumed up to the entire 371k training set. We see that initial growth is rapid,
thanks to the natural gradient, with much of the benefit obtained after just 50 batches. However, we
see continued improvement beyond this; it is reasonable to believe that if more data becomes available,
the performance can be further improved. On the other hand, we also observe that the performance
is limited by the modeling capacity of a (bi-)linear factorization model. In Chapter 4, we show that
superior performance can be achieved with a deep neural net.

Table 3.3 contains information on the qualitative performance of our model. The tagging model works
by capturing correlations between semantic tags and acoustic codewords in each latent factor βk. As
discussed, when a new song arrives with missing tag information, only the portion of βk corresponding
to acoustic codewords is used, and the semantic tag portion of βk is used to make predictions of the
missing tags. Similar to related topic models (Hoffman et al., 2013), we can therefore look at the
highly probable tags for each βk to understand what portion of the acoustic codeword space is being
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captured by that factor, and whether it is musically coherent. We show an example of this in Table 3.3,
where we list the top 7 tags from 9 latent factors βk learned by our model with J = 512. We sort the
tags according to expected relevance under the variational distribution Eq [βkd]. This shows which
tags are considered to have high probability for a song that has the given factor expressed. As is
evident, each factor corresponds to a particular aspect of a music genre. We note that other factors
contained similarly coherent tag information.

3.6 Summary

We present a codebook-based scalable music tagging model with Poisson matrix factorization. The
system learns the joint behavior of acoustic features and semantic tags, which can be used to infer the
most appropriate tags given the audio alone. The Poisson model is naturally less sensitive to zero
values than some alternatives, making it a good match to “noisy” training examples derived from real
users’ taggings, where the fact that no user has applied a tag does not necessarily imply that the term
is irrelevant. By learning this model using stochastic variational inference, we are able to efficiently
exploit much larger training sets than are tractable using batch approaches, making it feasible to learn
from an entire set of over 370k tagged examples. Although much of the improvement comes in the
earlier iterations, we see continued improvement implying this approach can benefit from much larger,
effectively unlimited sources of tagged examples, as might be available on a commercial music service
with millions of users.

There are a few areas where our model can be easily developed. For example, stochastic variational
inference requires we set the learning rate parameters t0 and κ, which is application-dependent. By
using adaptive learning rates for stochastic variational inference (Ranganath et al., 2013), model
inference can converge faster and to a better local optimal solution. From a modeling perspective,
currently the hyperparameters for weights θ are fixed, indicating that the sparsity level of the weight
for each song is assumed to be the same a priori. Alternatively we could put song-dependent hyper-
priors on the hyperparameters of θ to encode the intuition that some of the songs might have denser
weights because more tagging information is available. This would offer more flexibility to the current
model.
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Chapter 4

Content-Aware Collaborative Music
Recommendation

Although content is fundamental to our music listening preferences (or at least we believe so), the
leading performance in music recommendation is achieved by collaborative filtering methods which
exploit the similarity patterns in user’s listening history rather than the audio content of songs.
Meanwhile, collaborative filtering has the well-known “cold-start” problem, i.e., it is unable to
work with new songs that no one has listened to. Efforts on incorporating content information
into collaborative filtering methods have shown success in many non-musical applications, such as
scientific article recommendation. Inspired by the related work, we train a neural network on semantic
tagging information as a content model and use it as a prior in a collaborative filtering model. Such a
system still allows the user listening data to “speak for itself”. The proposed system is evaluated on the
Million Song Dataset and shows comparably better result than the collaborative filtering approaches,
in addition to the favorable performance in the cold-start case.

4.1 Introduction

Music recommendation is an important yet difficult task in mir. A recommendation system that
accurately predicts users’ listening preferences bears enormous commercial value. However, the high
complexity and dimensionality of music data and the scarcity of user feedback makes it difficulty to
create a successful music recommendation system.

Two primary approaches exist in recommendation1: collaborative filtering and content-based methods.
For music, the state-of-the-art recommendation results have been achieved by collaborative filtering
methods (e.g., all the top-ranked submissions to the Kaggle Million Song Dataset Challenge2 are
based on collaborative filtering even though the dataset also comes with content features and meta-
data), which requires only information on users’ listening history rather than the musical content for
recommendation. The central assumption of this model is that a user is likely to accept a song that is

1Collective intelligence also plays a huge role in commercial recommender systems. However, it is beyond the scope of this
dissertation.

2https://www.kaggle.com/c/msdchallenge

https://www.kaggle.com/c/msdchallenge
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liked by users who have similar taste. A major category of collaborative filtering approaches is based
on latent factor (matrix factorization) model. It assumes that a low-dimensional representation exists
for both users and songs such that the compatibility between a user and a song, modeled as their inner
product in this latent space, predicts the user’s fondness of the song. As discussed in Section 2.2.1, in
the case that user feedback is implicit (e.g., whether or not the user has listened to a particular song),
wmf (Hu et al., 2008) works particularly well. wmf is described in Section 2.2.2.2.

On the other hand, modeling musical content for the purpose of taste prediction is difficult due to
the structural complexity present in music data which is hard to capture by simple models. Deep
learning has shown its power in various pattern recognition tasks with its capability of extracting
hierarchical representations from raw data. In music recommendation, van den Oord et al. (2013)
have experimented with neural networks on predicting the song latent representation from musical
content.

It is natural to combine collaborative filtering and content models in recommendation to utilize
different sources of information. A successful attempt from Wang and Blei (2011), which joins a
content model on article with collaborative filtering, achieves good performance on scientific article
recommendation.

Inspired by these mentioned above, we create a content-aware collaborative music recommendation
system. As the name suggests, the system has two components: the content model and the collaborative
filtering model. To obtain a powerful content model, we pre-train a multi-layer neural network to
predict semantic tags from vector-quantized acoustic feature. The output of the last hidden layer is
treated as a high-level representation of the musical content, which is used as a prior for the song
latent representation in collaborative filtering. We evaluate our system on the Million Song Dataset
and show competitive performance to the state-of-the-art system.

4.2 Related work

In this section we review two closely relevant models: collaborative topic model for article recom-
mendation and deep content-based music recommendation. We also review other related work which
hybridizes content and collaborative filtering models.

4.2.1 Collaborative topic model

As reviewed in Section 2.2.2, a widely used approach to recommender systems is collaborative filtering,
where items are recommended to a user based on other users with similar patterns of item consumption.
Matrix factorization models (Hu et al., 2008; Koren et al., 2009) are among the most successful
collaborative filtering methods. In the case of the Gaussian matrix factorization (Salakhutdinov
and Mnih, 2008), efficient alternating least squares update (Algorithms 1 and 2) exists for scalable
inference, makes it an attractive option for commercial recommender systems.

Due to its content-free nature, collaborative filtering approaches can be applied in a wide range of
domains. They perform well on what is called in-matrix predictions, i.e., recommending items that
have been consumed by some users. However, this approach suffers from the well-known problem
that it is unable to recommend new items that no user has consumed, or making out-of-matrix
predictions, where content-based models are better suited. Figure 4.1 provides illustrative examples
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article is of strong interest to computer vision researchers. If enough
researchers use such services, these variables might also give an
alternative measure of the impact of an article within a field.

With these criteria in mind, we develop a machine learning al-
gorithm for recommending scientific articles to users in an online
scientific community. Our algorithm uses two types of data—the
other users’ libraries and the content of the articles—to form its
recommendations. For each user, our algorithm can finds both older
papers that are important to other similar users and newly written pa-
pers whose content reflects the user’s specific interests. Finally, our
algorithm gives interpretable representations of users and articles.

Our approach combines ideas from collaborative filtering based
on latent factor models [17, 18, 13, 1, 22] and content analysis
based on probabilistic topic modeling [7, 8, 20, 2]. Like latent
factor models, our algorithm uses information from other users’
libraries. For a particular user, it can recommend articles from other
users who liked similar articles. Latent factor models work well for
recommending known articles, but cannot generalize to previously
unseen articles.

To generalize to unseen articles, our algorithm uses topic mod-
eling. Topic modeling provides a representation of the articles in
terms of latent themes discovered from the collection. When used in
our recommender system, this component can recommend articles
that have similar content to other articles that a user likes. The topic
representation of articles allows the algorithm to make meaningful
recommendations about articles before anyone has rated them.

We combine these approaches in a probabilistic model, where
making a recommendation for a particular user is akin to computing
a conditional expectation of hidden variables. We will show how
the algorithm for computing these expectations naturally balances
the influence of the content of the articles and the libraries of the
other users. An article that has not been seen by many will be
recommended based more on its content; an article that has been
widely seen will be recommended based more on the other users.

We studied our algorithm with data from CiteULike: 5, 551 users,
16, 980 articles, and 204, 986 bibliography entries. We will demon-
strate that combining content-based and collaborative-based meth-
ods works well for recommending scientific articles. Our method
provides better performance than matrix factorization methods alone,
indicating that content can improve recommendation systems. Fur-
ther, while traditional collaborative filtering cannot suggest articles
before anyone has rated them, our method can use the content of
new articles to make predictions about who will like them.

2. BACKGROUND
We first give some background. We describe two types of recom-

mendation problems we address; we describe the classical matrix
factorization solution to recommendation; and we review latent
Dirichlet allocation (LDA) for topic modeling of text corpora.

2.1 Recommendation Tasks
The two elements in a recommender system are users and items.

In our problem, items are scientific articles and users are researchers.
We will assume I users and J items. The rating variable rij 2
{0, 1} denotes whether user i includes article j in her library [12].
If it is in the library, this means that user i is interested in article j.
(This differs from some other systems where users explicitly rate
items on a scale.) Note that rij = 0 can be interpreted into two
ways. One way is that user i is not interested in article j; the other
is that user i does not know about article j.

For each user, our task is to recommend articles that are not in
her library but are potentially interesting. There are two types of

Figure 1: Illustration of the two tasks for scientific article rec-
ommendation systems, where

p
indicates “like”, ⇥ “dislike”

and ? “unknown”.

recommendation: in-matrix prediction and out-of-matrix prediction.
Figure 1 illustrates the idea.

In-matrix prediction. Figure 1 (a) illustrates in-matrix predic-
tion. This refers to the problem of making recommendations about
those articles that have been rated by at least one user in the system.
This is the task that traditional collaborative filtering can address.

Out-of-matrix prediction. Figure 1 (b) illustrates out-of-matrix
prediction, where articles 4 and 5 have never been rated. (This is
sometimes called “cold start recommendation.”) Traditional col-
laborative filtering algorithms cannot make predictions about these
articles because those algorithms only use information about other
users’ ratings. This task is important for online scientific archives,
however, because users want to see new articles in their fields. A
recommender system that cannot handle out-of-matrix prediction
cannot recommend newly published papers to its users.

2.2 Recommendation by Matrix Factorization
The traditional approach to recommendation is collaborative fil-

tering (CF), where items are recommended to a user based on other
users with similar patterns of selected items. (Note that collaborative
filtering does not use the content of the items.) Most successful rec-
ommendation methods are latent factor models [17, 18, 13, 1, 22],
which provide better recommendation results than the neighborhood
methods [11, 13]. In this paper, we focus on latent factor models.

Among latent factor methods, matrix factorization performs well [13].
In matrix factorization, we represent users and items in a shared
latent low-dimensional space of dimension K—user i is represented
by a latent vector ui 2 RK and item j by a latent vector vj 2 RK .
We form the prediction of whether user i will like item j with the
inner product between their latent representations,

r̂ij = uT
i vj . (1)

Biases for different users and items can also be incorporated [13].
To use matrix factorization, we must compute the latent represen-

tations of the users and items given an observed matrix of ratings.
The common approach is to minimize the regularized squared error
loss with respect to U = (ui)

I
i=1 and V = (vj)

J
j=1,

minU,V

P
i,j(rij � uT

i vj)
2 + �u||ui||2 + �v||vj ||2, (2)

where �u and �v are regularization parameters.
This matrix factorization for collaborative filtering can be gener-

alized as a probabilistic model [18]. In probabilistic matrix factor-
ization (PMF), we assume the following generative process,

1. For each user i, draw user latent vector ui ⇠ N (0,��1
u IK).

2. For each item j, draw item latent vector vj ⇠ N (0,��1
v IK).

Figure 4.1: An illustration of the in-matrix (left) and out-of-matrix (right) predictions,
where X indicates “like”, x indicates “dislike”, and ? indicates “unknown”. The
goal of both predictions is to predict the values of ?’s. (Copied from Wang and Blei
(2011))

for both in-matrix and out-of-matrix predictions. Many efforts have been made to incorporate content
into collaborative filtering. Wang and Blei (2011) propose the ctr model for scientific article
recommendation, which is particularly relevant to our proposed method.

There are two components in ctr: a matrix factorization collaborative filtering model (wmf as
described in Section 2.2.2.2) and a latent Dirichlet allocation (lda) article content model. lda (Blei
et al., 2003) is a mixed-membership model on documents. Assuming there are K topics Φ = φ1:K,
each of which is a distribution over a fixed set of vocabulary, lda treats each document as a mixture
of these topics where the topic proportion πi is inferred from the data. One can understand lda as
representing documents in a low-dimensional “topic” space with the topic proportion being their
coordinates. With this interpretation, the generative process of ctr is as follows:

• For user u = 1, . . . , U, draw user latent factor: θu ∼ N (0, λ−1
θ IK),

• For document i = 1, . . . , I,

– Draw topic proportion πi ∼ Dir(α),

– For word n in document i,

∗ Draw topic assignment zin ∼ Discrete(πi),

∗ Draw word win ∼ Discrete(φzin),

– Draw latent factor βi ∼ N (πi, λ−1
β IK),

• For user-document pair (u, i), draw feedback: rui ∼ N (θ>u βi, c−1
ui ).
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Here the confidence cui is set the same as in wmf. We can see ctr differs from wmf in that ctr
assumes that the item latent factor βi is close to the topic proportion πi but could deviate from it if
necessary. This allows the user-item interaction data to “speak for itself”. An attractive characteristic
of ctr is its capability of making out-of-matrix predictions. This is done by using the topic proportion
πi alone as the item latent factor: r̂ui = θ>u πi, which is not possible in the traditional collaborative
filtering model.

Although ctr achieves better recommendation performance thanwmf, it does not scale well with large
data. Since the model is not conditionally conjugate: the prior on βi comes from a Dirichlet-distributed
random variable πi, topic proportion πi cannot be updated analytically and slower numerical opti-
mization method is required. To address this problem, Gopalan et al. (2014) propose the collaborative
topic Poisson factorization (ctpf). This model replaces the Gaussian likelihood and Gaussian prior
in ctr with Poisson likelihood and gamma prior, thus becoming conditionally conjugate with closed-
form updates. Experiments on large-scale scientific article recommendation demonstrate that ctpf
performs significantly better than ctr.

The main difference that sets our method apart from collaborative topic model is the content model.
As a feature extractor, lda can only produce linear factors due to its bilinear nature. On the other
hand, multi-layer neural network used by in our system is capable of capturing the non-linearities in
the feature space.

4.2.2 Deep content-based music recommendation

Previous attempts on content-based music recommendation have achieved promising results. van den
Oord et al. (2013) utilize a neural network to map acoustic features to the song latent factors learned
from wmf. As a result, given a new song that no one has ever listened to, a latent factor can still be
predicted from the network and recommendation can be done in the same fashion as with a regular
collaborative filtering model.

Our method is very similar to this approach, but we will point out two major differences:

• First, the neural network is used for different purposes. We use it as a content feature extractor,
just like lda in the collaborative topic model. The neural network in van den Oord et al. (2013)
maps content directly to the latent factors learned from pure collaborative filtering, and the
resulting model is expected to operate similarly to collaborative filtering even when usage data
is absent.

• Since the neural network is trained to map content to the latent factors learned from wmf, the
performance of van den Oord et al. (2013) is unlikely to surpass that of wmf. What we propose
in this paper, on the other hand, uses content as an addition to wmf, in a similar manner as the
collaborative topic model described in Section 4.2.1. As we show in the experiment, we are
able to achieve better result than wmf when we only have limited amount of user feedback.

Other approaches that hybridize content and collaborative models include Yoshii et al. (2006), McFee
et al. (2010), and Wang and Wang (2014). Yoshii et al. (2006) train a three-way probabilistic model
that joins user, item, and content by a latent “topic” variable; the model focuses on explicit feedback
(user ratings). McFee et al. (2010) take a similar approach to van den Oord et al. (2013) and learn a
content-based similarity function from collaborative filtering via metric learning. Wang and Wang
(2014) also use a neural network to incorporate music content into the collaborative filtering model.
The major difference is that in Wang and Wang (2014) the output of the neural network is treated
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as item latent factor and the neural network is trained to minimize a loss function that is based
on collaborative filtering. Therefore the content model itself does not have explicit musicological
meaning, as opposed to neural network in our system which is trained to predict semantic music
tags.

4.3 Content-aware music recommendation

Adopting the same structure as that of CTR, our system consists of two components: a content model
which is based on a pre-trained neural network and a collaborative filtering model based on matrix
factorization.

4.3.1 Supervised pre-training

Inspired by the success of transfer learning in computer vision which exploits deep convolutional
neural networks (Krizhevsky et al., 2012), in our system we pre-train a multi-layer neural network in
a supervised semantic tagging prediction task and use it as the content model.

Our training data is the same from Section 3.5 which consists of 370k tracks from the Million Song
Dataset and the pre-processed Last.fm data with a vocabulary of 561 tags, including genre, mood,
instrumentation, etc. We use the Echonest’s timbre feature, which is very similar to MFCC. To get the
song-level features, we vector-quantize all the timbre features following the standard procedure: We
run the k-means algorithm on a subset of randomly selected training data to learn V = 1024 cluster
centroids (codewords). Then for each song, we assign each segment (frame) to the cluster with the
smallest Euclidean distance to the centroid. We aggregate the VQ feature of song i (xi ∈ RV

+) by
counting the number of assignments to each cluster across the entire song and then normalize it to
have unit `1 norm to account for the various lengths.

We treat music tagging as a binary classification problem: For each tag, we make independent
predictions on whether the song is tagged with it or not. We fit the output of the network f (xi) ∈ R561

into logistic regression classifiers with independent cross entropy loss. Therefore, given tag labels
yit ∈ {−1, 1} for song i and tag t, the network is trained to minimize the following objective:

Ltag = ∑
i,t

log(1 + exp(−yit ft(xi))

Here we use a network with three fully-connected hidden layers and rectified linear units (ReLU)
activations with dropout (p = 0.5) (Srivastava et al., 2014). Each layer has 1,200 neurons. Stochastic
gradient descent with mini-batch of size 100 is used with AdaGrad (Duchi et al., 2011) for adjusting the
learning rate3. We notice that both dropout and AdaGrad are crucial for getting the good performance.
The tagging performance is reported in Section 4.4.1.

3The source code for training the neural network is available at: https://github.com/dawenl/deep_tagging

https://github.com/dawenl/deep_tagging
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4.3.2 Content-aware collaborative filtering

We can interpret the output of the last hidden layer hi ∈ RFh (here Fh = 1200) as a latent content
representation of song i. Because of the way the network is trained, this latent representation is
supposed to be highly correlated to the semantic tags (“topics” of music). Therefore, we can take
a similar approach to the collaborative topic model and use this representation in a collaborative
filtering model.

The generative process for the proposed model is as follows:

• For user u = 1, . . . , U, draw user latent factor: θu ∼ N (0, λ−1
θ IK).

• For each song i = 1, . . . , I, draw song latent factor: βi ∼ N (W>hi, λ−1
β IK).

• For each user-song pair (u, i), draw implicit feedback (whether user u listened to song i):
rui ∼ N (θ>u βi, c−1

ui ).

Since the dimensionality of hi is generally much higher than that of the song latent factor βi, we
use a weight matrix W ∈ RFh×K that transforms the learned content representation from the neural
networks into the collaborative filtering latent space via W>hi. The precision parameter λβ balances
how the song latent vector βi deviates from the content feature: larger λβ will force the song latent
factors to stay close to the content feature. We set the confidence cui following the same way as in Hu
et al. (2008):

cui = 1 + α log(1 + rui/ε)

where α and ε are tunable hyperparameters. A graphical model representation of the content-aware
collaborative filtering model is shown in Figure 4.2. We use f (·) to indicate that the content feature
hi comes from the pre-trained neural network.

yui

θu

βi

λθ

hi W

λβ

f (·)

I

U

Figure 4.2: Graphical model representation for the content-aware collaborative
filtering model.

We want to emphasize that our proposed model is content-aware instead of content-based. Just like
collaborative topic model, our proposed model is still fundamentally based on collaborative filtering
(wmf, to be more precise). The content model is only used as a prior and can be deviated if the model
thinks it is necessary to explain the data. As a matter of fact, with sufficient amount of feedback data,
the model will almost always choose to derivate from the content feature, because the collaborative
filtering part of the model will find it better at explaining the feedback data.
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Inference. We estimate the model parameters {θ1:U , β1:I , W} via maximum a posteriori since it
enables us to tractably fit the model to large-scale datasets. The complete log-likelihood of the model
is written as:

L =−∑
u,i

cui
2
(rui − θ>u βi)

2 − λθ

2 ∑
u
‖θu‖2

2 −
λβ

2 ∑
i
‖βi −W>hi‖2

2.

From this objective, we can also interpret the model as regularizing the song latent factors βi towards
something musicologically meaningful (hi), instead of 0. Taking the gradient of the complete log-
likelihood with respect to the model parameters θu, βi, and W , and setting it to 0, respectively, we
can obtain the following closed-form coordinate updates:

θnew
u ← (∑

i
cuiβiβ

>
i + λθIK)

−1(∑
i

cuiruiβi) (4.1)

βnew
i ← (∑

u
cuiθuθ>u + λβIK)

−1(∑
u

cuiruiθu + λβW>hi) (4.2)

Wnew ← (∑
i

hih>i + λWIFh)
−1(∑

i
hiβ
>
i ) (4.3)

When updating W , we add a small ridge term λW to the diagonal of the matrix to regularize and avoid
numerical problems when inverting. These updates are very similar to alternating least squares (ALS)
of wmf. The main difference is in how we update βi in the proposed model. We can view each update
of ALS as a weighted ridge regression. Therefore, the update for βi is collectively performing ridge
regression with two sources of information: the click data rui and the (transformed) content feature
W>hi. Alternating between updating θ1:U , β1:I , and W , we are guaranteed to reach a stationary
point of the complete log-likelihood.

The same technique used in Hu et al. (2008) to speed up computation (described in Section 2.2.2.2)
can be applied here. This enables us to apply our model to large-scale music corpus and user-item
interaction, which is not possible for ctr. The full algorithm is summarized in Algorithm 5.

Prediction. After the model is trained, we can make in-matrix prediction by r̂ui = θ>u βi. Similar to
the collaborative topic model, we can also make out-of-matrix prediction for songs that no one has
listened to by only using the content r̂ui = θ>u (Whi).

4.4 Evaluation

We first evaluate our system on the pre-training tag prediction task to ensure the quality of the
extracted features, and then measure its recommendation performance in comparison with related
models4.

4.4.1 Tag prediction

Evaluation tasks and metrics. We evaluate the pre-trained neural network on semantic tags with
an annotation task and a retrieval task. We use the same dataset in Section 3.5 from the Million

4https://github.com/dawenl/content_wmf contains the source code for training the proposed model and reproduc-
ing the experimental results for recommendation in Section 4.4.2.

https://github.com/dawenl/content_wmf
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Algorithm 5: CA-ALS Content-aware collaborative filtering inference

Input: Click matrix rui, the confidence for clicked c1 and unclicked c0, regularization parameters λθ ,
λβ and λW

Output: User latent factors θ1:U , item latent factors β1:I , and weight matrix W
Randomly initialize θ1:U , β1:I , and W
while not converged do

Precompute ∑i c0βiβ
>
i + λθIK

for u← 1 to U do
Update user factor θu (Eq. 4.1)

end
Precompute ∑u c0θuθ>u + λβIK
for i← 1 to I do

Update item factor βi (Eq. 4.2)
end
Update weight matrix W (Eq. 4.3)

end
return θ1:U , β1:I , W

Song Dataset (Bertin-Mahieux et al., 2011) and compare with the result in Section 3.5 which, to our
knowledge, is the state-of-the-art performance on large-scale tag prediction. Note that we only use tag
prediction as a proxy to measure the quality of the content model and do not argue for our approach
as an optimal one to automatic music tagging.

For the annotation task we seek to automatically tag unlabeled songs. To evaluate the model’s ability
to annotate songs, we compute the average per-tag precision, recall, and F-score on the held-out test
set. For the retrieval task, given a query tag we seek to provide a list of songs which are related to that
tag. To evaluate retrieval performance, for each tag in the vocabulary we ranked each song in the test
set by the predicted probability. We then calculate the area under the receiver-operator curve (AROC)
and mean average precision (MAP) for each ranking. The detailed description of the metrics can be
found in Section 3.5.

Tagging performance and discussion. The results are reported in Table 4.1, which shows that the
pre-trained neural network performs significantly better than the approach based on Poisson matrix
factorization in Chapter 3. This is not surprising for two reasons: 1) Here we treat tag prediction as a
supervised task and train a multi-layer neural network, while in Chapter 3 the problem is formulated
as an unsupervised learning task to account for the uncertainty in the user-generated tags (which
incidentally can be considered as a typical example of implicit feedback). 2) Similar to lda, Poisson
matrix factorization can only capture linear factor, whose expressive power is much weaker than that
of a multi-layer neural network.

Nevertheless, the results confirm that our pre-trained neural network can be considered as an effective
content feature extractor and wewill use the output of the last hidden layer as the content feature.

Note that our neural network has relatively simple structure and does not directly use raw acoustic
features (e.g., log-mel spectrograms) as input. It is reasonable to believe that with a more complex net-
work structure and low-level acoustic feature, we should be able to achieve better tagging performance
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Model Prec Recall F-score AROC MAP

SPMF 0.127 0.146 0.136 0.712 0.120
NNet 0.184 0.207 0.195 0.781 0.178

Table 4.1: Annotation and retrieval performance on the Million Song Dataset from
Poisson matrix factorization with stochastic inference (SPMF) (described in Chap-
ter 3) and the pre-trained neural network (NNet) described in Section 4.3.1. The
standard error is on the order of 0.01, thus not included here.

and obtain a more powerful content feature extractor, which could further boost the performance of
our proposed recommendation method.

4.4.2 Recommendation

Data preparation. We use the Taste Profile Subset which is part of the Million Song Dataset to
evaluate the recommendation performance. It contains listening history in the form of play counts
from one million users with more than 40 million (user, song, play count) triplets. We first binarize
all the play counts5 and create two complementary subsets, a dense one (DEN) and a sparse one
(SPR):

For the dense subset (DEN), we intend to create a subset that is reasonably dense so that the traditional
collaborative filtering model will have good performance. We remove the users who have less than
20 songs in their listening history and songs that are listened to by less than 50 users, obtaining a
subset with 613,682 users and 97,414 songs with more than 38 million user-song pairs (sparsity level
0.064%). For the sparse subset (SPR), on the contrary, we only keep the users who have less than 20
songs in their listening history and songs that are listened to by less than 50 users, yielding a highly
sparse (0.002%) subset with 564,437 users and 260,345 songs.

We select 5% of the songs from DEN (4,871) for out-of-matrix prediction. For both subsets we split
20% and 10% as test and validation sets, respectively. Validation set is used to select hyperparameters,
as well as monitor convergence by computing predictive likelihood.

Competing methods. We compare our proposed method (denoted as CF + deep) with wmf (Hu
et al., 2008), as well as the following three methods:

• CF + shallow: A simple baseline where we directly use the normalized VQ feature xi in place
of the feature extracted from the neural network hi. This baseline is mainly used to demonstrate
the necessity of an effective feature extractor for out-of-matrix prediction.

• Poisson matrix factorization (pmf) (Gopalan et al., 2015): Just like wmf, pmf is a matrix
factorization model for collaborative filtering. Instead of Gaussian likelihood and priors on
the latent factors, it utilizes Poisson likelihood model and gamma priors to learn nonnegative
embeddings for both users and items. Concretely, it follows the following generative process:

– For user u = 1, . . . , U, draw user latent factor θuk ∼ Gam(a, b),

– For item i = 1, . . . , I, draw item latent factor βki ∼ Gam(c, d),

5In practice, we find that the performances using actual play counts and binarized indicators are very close for our model.
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– For each user-item pair (u, i), draw feedback: rui ∼ Pois(θ>u βi).

The biggest advantage of pmf is computational. As shown in Gopalan et al. (2015), the
inference algorithm has complexity that scales linearly with the number of non-zero entries in
the user-item matrix, which is the same as that of wmf.

• ctpf (Gopalan et al., 2014): As mentioned in Section 4.2.1, ctr cannot scale to large datasets
due to the non-conjugacy of the model. ctpf is proposed as a workaround: it incorporates the
content information into pmf in the same way as ctr incorporates the content into wmf. The
generative process is (recall V = 1024 is the size of the codebook for vector-quantization and
we use v ∈ {1, . . . , V} to index codeword):

– For topic k = 1, . . . , K, draw topic γvk ∼ Gam(c, d),

– For user u = 1, . . . , U, draw user latent factor θuk ∼ Gam(a, b),

– For item i = 1, . . . , I,

∗ Draw topic intensities: βik ∼ Gam(e, f ),

∗ Draw additive offset εik ∼ Gam(g, h),

∗ Draw codeword count civ ∼ Pois(β>i γv),

– For each user-item pair (u, i), draw feedback: rui ∼ Pois(θ>u (βi + εi)).

Additionally, it is conditionally conjugate with closed-form variational inference updates and
enjoys the same computational efficiency as pmf. Therefore, it can be applied to large-scale
dataset without delicate engineering.

Based on our argument in Section 4.2.2, we do not directly compare with van den Oord et al. (2013)
because it is sufficient to compare with wmf. For out-of-matrix recommendation evaluation, we
compare with ctpf and CF + shallow. In all the experiments, the dimensionality of the latent space
K = 50. We select α = 2 and ε = 10−6 to compute the confidence cui. For wmf, CF + shallow,
and CF + deep, the model parameters θ1:U , β1:I and W (if any) are randomly initialized to the same
values.

Evaluation metrics. To evaluate different algorithms, we produce a ranked list of all the songs
(excluding those in the training and validation sets) for each user based on the predicted preference
r̂ui for i ∈ {1, . . . , I}.

Precision and recall are commonly used evaluation metrics. However, for implicit feedback data, the
zeros can mean either the user is not interested in the song or more likely, the user is not aware of the
song. This makes the precision less interpretable. However, since the non-zero rui’s are known to
be true positive, we instead report Recall@M, which only considers songs within the top M in the
ranked list. For each user, the definition of Recall@M is

Recall@M =
# of songs that the user listened to in top M
total # of songs the user has listened to

.

In addition to Recall@M, we also report (untruncated) normalized discounted cumulative gain
(NDCG) (Järvelin and Kekäläinen, 2002). Unlike Recall@M which only focuses on top M songs
in the predicted list, NDCG measures the global quality of recommendation. In the meantime, it
also prefers algorithms that place held-out test items higher in the list by applying a discounted
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Model R@40 R@80 R@120 R@160 R@200 NDCG

pmf (Gopalan et al., 2015) 0.1021 0.1533 0.1908 0.2206 0.2456 0.2419
ctpf (Gopalan et al., 2014) 0.1031 0.1511 0.1861 0.2138 0.2370 0.2395

wmf (Hu et al., 2008) 0.1722 0.2367 0.2803 0.3133 0.3397 0.2881
CF + shallow 0.1724 0.2368 0.2803 0.3131 0.3396 0.2883
CF + deep 0.1722 0.2365 0.2800 0.3129 0.3394 0.2882

Table 4.2: In-matrix performance on the DEN subset with proposed and competing
methods. We can see that with sufficient amount of user feedback, there is almost no
difference in terms of recommendation performance among WMF, CF + shallow,
and CF + deep.

Model R@40 R@80 R@120 R@160 R@200 NDCG

ctpf (Gopalan et al., 2014) 0.0256 0.0700 0.1440 0.1869 0.2086 0.1271
CF + shallow 0.0503 0.0894 0.1218 0.1514 0.1778 0.1429
CF + deep 0.0910 0.1461 0.1881 0.2241 0.2550 0.1605

Table 4.3: Out-of-matrix performance on the DEN subset with proposed and com-
peting methods. We can see a larger margin between CF + deep and CF + shallow,
as compared to their close performance on in-matrix predictions in Table 4.2. This
suggests the importance of a powerful feature extractor in the absence of usage data.

weight. Given a ranked list of songs from the recommendation algorithm, for each user NDCG can be
computed as follows:

DCG =
I

∑
i=1

2reli − 1
log2(i + 1)

; NDCG =
DCG
IDCG

.

Given our binarized data, the reverence reli is also binary: 1 if song i is in the held-out user listening
history and 0 otherwise. IDCG is the optimal DCG score where all the held-out test songs are ranked
top in the list. Therefore, larger NDCG values indicate better performance.

Results on the DEN subset. The model hyperparameters λθ = λW = 10 and λβ = 100 are selected
from the validation set based on NDCG. The in-matrix and out-of-matrix performances are reported
in Tables 4.2 and 4.3, respectively. All the metrics are averaged across 612,232 users in the held-out
test user-item pairs.

We can see that with sufficient amount of user feedback, there is almost no difference in performance
among wmf, CF + shallow, and CF + deep6 – there is not a single model which is consistently better.
This is understandable, since both CF + shallow and CF + deep are fundamentally collaborative
filteringmodels. With enough user feedback, the model is able to producemeaningful recommendation
without resorting to the content features. Moreover, CF + shallow, which has access to more content
information, does slightly better than CF + deep.

One observation from Table 4.2 is that adding content features does not necessarily improve the
recommendation performance. Unlike CF + deep, ctpf falls behind its content-free counterpart pmf

6There is little point in arguing for the statistical significance of the difference, since given the number of users to average
over, the standard error is vanishingly small.
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Model R@40 R@80 R@120 R@160 R@200 NDCG

wmf (Hu et al., 2008) 0.1137 0.1286 0.1378 0.1449 0.1505 0.1415
CF + shallow 0.1138 0.1286 0.1377 0.1449 0.1504 0.1416
CF + deep 0.1140 0.1289 0.1378 0.1451 0.1507 0.1417

Table 4.4: In-matrix performance on the SPR subset with proposed and competing
methods. With very limited user feedback, both CF + shallow and CF + deep
outperform the content-free WMF.

on both Recall@M and NDCG. This is possibly due to the insufficient feature extraction capability
of the topic model (lda) on the rich musical data.

The superiority of CF + deep is more obvious on the out-of-matrix predictions performance shown
in Table 4.3. We can see a larger margin between CF + deep and CF + shallow, as compared to
their close performance on in-matrix predictions. This suggests the importance of a powerful feature
extractor in the absence of usage data. Even a simple linear lda model in ctpf can be more effective
than CF + shallow at predicting songs that the users listened to in the held-out test set.

Results on the SPR subset. We repeat the in-matrix evaluation on the highly sparse SPR subset.
The model hyperparameters λθ = λW = 10−2 and λβ = 1 are selected from the validation set. The
performance is reported in Table 4.4. All the metrics are averaged across 564,437 users in the held-out
test user-item pairs.

Again, the overall differences among all three methods are relatively minor. However, with very
limited user feedback, both CF + shallow and CF + deep outperform the content-free wmf. More
importantly, CF + deep consistently improves over CF + shallow, which indicates the importance of
an effective feature extractor.

4.5 Summary

In this chapter we present a content-aware collaborative music recommendation system that joins a
multi-layer neural network content model with a collaborative filtering model. The system achieves
the state-of-the-art performance in music recommendation given content and implicit feedback
data.

A possible future direction is to incorporate ranking-based loss function, e.g., theweighted approximate-
rank pairwise (WARP) loss in Weston et al. (2011) into the collaborative filtering model. We normally
evaluate recommendation algorithms using ranking-based metrics (e.g. Recall@M and NDCG), but
the model is trained using squared loss function. This discrepancy can be problematic sometimes, as
it can mislead the learning algorithm to focus on optimizing unimportant portion of the model. It
would be more natural to directly optimize a ranking-based loss function.
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Chapter 5

Modeling User Exposure in
Recommendation

In this chapter and the next chapter, we will focus on general models for recommender systems.
Collaborative filtering analyzes user preferences for items (e.g., books, movies, restaurants, academic
papers) by exploiting the similarity patterns across users. In implicit feedback settings, all the items,
including the ones that a user did not consume, are taken into consideration. But this assumption
does not accord with the common sense understanding that users have a limited scope and awareness
of items. For example, a user might not have heard of a certain paper, or might live too far away
from a restaurant to experience it. In the language of causal analysis (Imbens and Rubin, 2015), the
assignment mechanism (i.e., the items that a user is exposed to) is a latent variable that may change for
various user/item combinations. In this paper, we propose a new probabilistic approach that directly
incorporates user exposure to items into collaborative filtering. The exposure is modeled as a latent
variable and the model infers its value from data. In doing so, we recover one of the most successful
state-of-the-art approaches wmf as a special case of our model (Hu et al., 2008), and provide a plug-in
method for conditioning exposure on various forms of exposure covariates (e.g., topics in text, venue
locations). We show that our scalable inference algorithm outperforms existing benchmarks in four
different domains both with and without exposure covariates.

5.1 Introduction

As motivated in Section 2.2, it is crucial to make good recommendation on the web, as users are
overwhelmed with choice. In this chapter, we focus on recommendation with implicit data (see
Section 2.2.1 for definition).

Existing approaches account for this by downweighting the unclicked items. In wmf (Hu et al., 2008)
the data about unclicked items are given a lower “confidence”, expressed through the variance of
a Gaussian random variable. In Bayesian personalized ranking (Rendle et al., 2009), the unclicked
items are artificially subsampled at a lower rate in order to reduce their influence on the estimation.
These methods are effective, but they involve heuristic alterations to the data.
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We take a direct approach to solving this problem. We develop a probabilistic model for recommen-
dation called Exposure MF (abbreviated as ExpoMF) that separately captures whether a user has
been exposed to an item from whether a user has ultimately decided to click on it. This leads to
an algorithm that iterates between estimating the user preferences and estimating the exposure, i.e.,
why the unclicked items were unclicked. When estimating preferences, it naturally downweights the
unclicked items that it expected the user will like, because it imagines that she was not exposed to
them.

Concretely, imagine a music listener with a strong preference for alternative rock bands such as
Radiohead. Imagine that, in a dataset, there are some Radiohead tracks that this user has not listened
to. There are different reasons which may explain unlistened tracks (e.g., the user has a limited listening
budget, a particular song is too recent or is unavailable from a particular online service). According
to that user’s listening history these unlistened tracks would likely make for good recommendations.
In this situation our model would assume that the user does not know about these tracks—she has
not been exposed to them—and downweight their (negative) contribution when inferring that user’s
preferences.

Further, by separating the two sides of the problem, our approach enables new innovations in implicit
recommendation models. Specifically, we can build models of users’ exposure that are guided by
additional information such as item content, if exposure to the items typically happens via search, or
user/item location, if the users and items are geographically organized.

As an example imagine a recommender system for diners in New York City and diners in Las
Vegas. New Yorkers are only exposed to restaurants in New York City. From our model’s perspec-
tive, unvisited restaurants in New York are therefore more informative in deriving a New Yorker’s
preferences compared to unvisited restaurants in Las Vegas. Accordingly for New York users our
model will upweight unvisited restaurants in New York while downweighting unvisited Las Vegas
restaurants.

We studied our method with user listening history from a music intelligence company, clicks from a
scientific e-print server, user bookmarks from an online reference manager, and user checkins at venues
from a location-based social network. In all cases, ExpoMF matches or surpasses the state-of-the-art
method of wmf (Hu et al., 2008). Furthermore, when available, we use extra information to inform
our user exposure model. In those cases using the extra information outperforms the simple ExpoMF
model. Further, when using document content information our model also outperforms a method
specially developed for recommending documents using content and user click information (Wang
and Blei, 2011). We illustrate the alternative-rock-listener and the New-York-dinner examples using
real data fit with our models in Figure 5.2 and Figure 5.3. Finally, we demonstrate the versatility of
ExpoMF by showcasing a couple of examples which incorporate exposure from different sources
(e.g., the authors of a paper, or the friends in a social network).

5.2 Exposure matrix factorization

We present exposure matrix factorization (ExpoMF). In Section 5.2.1, we describe the main model. In
Section 5.2.2 we discuss several ways of incorporating external information into ExpoMF (i.e., topics
from text, locations). We derive inference procedures for our model (and variants) in Section 5.2.3.
Finally we discuss how to make predictions given our model in Section 5.2.4.
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5.2.1 Model description

For every combination of users u = 1, . . . , U and items i = 1, . . . , I, consider two sets of variables.
The first matrix A = {aui} indicates whether user u has been exposed to item i (exposure matrix).
The second matrix Y = {yui} indicates whether or not user u clicked on item i (click matrix).

Whether a user is exposed to an item comes from a Bernoulli. Conditional on being exposed, user’s
preference comes from a Gaussian matrix factorization model, which factorizes this conditional
distribution to K user preferences θi,1:K and K item attributes βu,1:K,

θu ∼ N (0, λ−1
θ IK)

βi ∼ N (0, λ−1
β IK)

aui ∼ Bernoulli(µui)

yui | aui = 1 ∼ N (θ>u βi, λ−1
y )

yui | aui = 0 ∼ δ0,

(5.1)

where δ0 denotes that p(yui = 0 | aui = 0) = 1, and we introduced a set of hyperparameters denoting
the inverse variance (λθ , λβ, λy). µui is the prior probability of exposure, we discuss various ways of
setting or learning it in subsequent sections. A graphical representation of the model in Eq. 5.1 is
given in Figure 5.1a.

We observe the complete click matrix Y . These have a special structure. When yui > 0, we know that
aui = 1. When yui = 0, then aui is latent. The user might have been exposed to item i and decided
not to click (i.e., aui = 1, yui = 0); or she may have never seen the item (i.e., aui = 0, yui = 0). We
note that since Y is usually sparse in practice, most aui will be latent.

The model described in Eq. 5.1 leads to the following log joint probability1 of exposures and clicks
for user u and item i,

log p(aui, yui | µui, θu, βi, λ−1
y )

= log Bernoulli(aui | µui) + aui logN (yui | θ>u βi, λ−1
y )

+ (1− aui) log I[yui = 0],

(5.2)

where I[b] is the indicator function that evaluates to 1 when b is true, and 0 otherwise.

What does the distribution in Eq. 5.2 say about the model’s exposure beliefs when no clicks are
observed? When the predicted preference is high (i.e., when θ>u βi is high) then the log-likelihood of
no clicks logN (0 | θ>u βi, λ−1

y ) is low and likely non-positive. This feature penalizes the model for
placing probability mass on aui = 1, forcing us to believe that user u is not exposed to item i. (The
converse argument also holds for low values of θ>u βi). Interestingly, a low value of aui downweights
the evidence for θu and βi (this is clear by considering extreme values: when aui = 0, the user
and item factors do not affect the log joint in Eq. 5.2 at all; when aui = 1, we recover standard
matrix factorization). Like wmf (Hu et al., 2008), ExpoMF shares the same feature of selectively
downweighting evidence from the click matrix.

1N.B., we follow the convention that 0 log 0 = 0 to allow the log joint to be defined when yui > 0.
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In ExpoMF, fixing the entries of the exposure matrix to a single value (e.g., aui = 1, ∀u, i) recovers
Gaussian probabilistic matrix factorization (Salakhutdinov and Mnih (2008), see Section 2.2.2.1).
wmf is also a special case of our model which can be obtained by fixing ExpoMF’s exposure matrix
using the confidence c0 and c1 (see Section 2.2.2.2).

The intuitions we developed for user exposure from the joint probability do not yet involve µui, the
prior belief on exposure. As we noted earlier, there are a rich set of choices available in the modeling
of µui. We discuss several of these next.

5.2.2 Hierarchical modeling of exposure

We now discuss methods for choosing and learning µui. One could fix µui at some global value for
all users and items, meaning that the user factors, item factors, and clicks would wholly determine
exposure (conditioned on variance hyperparameters). One could also fix µui for specific values of
u and i. This can be done when there is specific extra information that informs us about exposure
(denoted as exposure covariates), e.g. the location of a restaurant, the content of a paper. However,
we found that empirical performance is highly sensitive to this choice, motivating the need to place
models on the prior for µui with flexible parameters.

We introduce observed exposure covariates xi and exposure model parameters ψu and condition
µui |ψu, xi according to some domain-specific structure. The extended graphical model with exposure
covariates is shown in Figure 5.1b. Whatever this exposure model looks like, conditional independence
between the priors for exposure and the more standard collaborative filtering parameters (given
exposure) ensures that the updates for the model we introduced in Section 5.2.1 will be the same
for many popular inference procedures (e.g., expectation-maximization, variational inference, Gibbs
sampling), making the extension to exposure covariates a plug-in procedure. We discuss two possible
choices of exposure model next.

Per-item µi. A direct way to encode exposure is via item popularity: if a song is popular, it is more
likely that you have been exposed to it. Therefore, we choose an item-dependent conjugate prior on
µi ∼ Beta(α1, α2). This model does not use any external information (beyond clicks).

Text topics or locations as exposure covariates. In the domain of recommending text documents,
we consider the exposure covariates as the set of words for each document. In the domain of location-
based recommendation, the exposure covariates are the locations of the venues being recommended.
We treat both in a similar way.

Consider a L-dimensional (L does not necessarily equal the latent space dimension K in the matrix
factorization model) representation xi of the content of document i obtained through natural language
processing (e.g., word embeddings (Mikolov et al., 2013), latent Dirichlet allocation (Blei et al.,
2003)), or the position of venue i obtained by first clustering all the venues in the data set then finding
the expected assignment to L clusters for each venue. In both cases, xi is all positive and normalizes
to 1. Denoting σ(·) as the sigmoid function, we set

µui = σ(ψ>u xi),

where we learn the coefficients ψu for each user u. Furthermore, we can include intercepts with
various levels and interactions (Gelman and Hill, 2006).
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Figure 5.1: Graphical representation of the exposure MF model (both with and
without exposure covariates). The lightly shaded node aui indicates that it is partially
observed (i.e., it is observed when yui = 1 and unobserved otherwise).
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How to interpret the coefficients ψu? The first interpretation is that of logistic regression, where the
independent variables are xi, the dependent binary variables are aui, and the coefficients to learn are
ψu.

The second interpretation is from a recommender systems perspective: ψu represents the topics (or
geographical points of interest) that a user is usually exposed to, restricting the choice set to documents
and venues that match ψu. For example, if the lth topic represents neural networks, and xil is high,
then the user must be an avid consumer of neural network papers (i.e., ψul must be high) for the
model to include an academic paper i in the exposure set of u. In the location domain if the lth cluster
represents Brooklyn, and xil is high, then the user must live in or visit Brooklyn often for the model
to include venues near there in the exposure set of u.

5.2.3 Inference

We use em algorithm to find the maximum a posteriori estimates of the unknown parameters of the
model (see Section 2.1.1).2 The algorithm is summarized in Algorithm 6.

The em inference procedure for the basic model, ExpoMF, can be found by writing out the full log-
likelihood of the model, then alternating between finding the expectations of missing data (exposure)
in the E(xpectation)-step and finding maximum of the likelihood with respect to the parameters in the
M(aximization)-step. This procedure is analytical for our model because it is conditionally conjugate,
meaning that the posterior distribution of each random variable is in the same family as its prior in
the model.

Furthermore, as we mentioned in Section 5.2.2, conditional independence between the priors for µui
and the rest of the model (given µui) means that the update for the latent exposure variables and user
and item factors are not altered for any exposure model we use. We present these general updates
first.

E-step. In the E-step, we compute expectation of the exposure latent variable E [aui] for all user and
item combinations (u, i) for which there are no observed clicks (recall that the presence of clicks
yui > 0 means that aui = 1 deterministically),

E [aui | θu, βi, µui, yui = 0] =
µui · N (0|θ>u βi, λ−1

y )

µui · N (0|θ>u βi, λ−1
y ) + (1− µui)

. (5.3)

where N (0 | θ>u βi, λ−1
y ) stands for the probability density function of N (θ>u βi, λ−1

y ) evaluated at
0.

M-step. For notational convenience, we define pui = E [aui | θu, βi, µui, yui = 0] computed from
the E-step. Without loss of generality, we define pui = 1 if yui = 1. The update for the latent

2There are various other inference methods we could have used, such as mcmc (Neal, 1993; Robert and Casella, 2013) or
variational inference (Jordan et al., 1999; Wainwright and Jordan, 2008). We chose em for reasons of efficiency and simplicity,
and find that it performs well in practice.
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collaborative filtering factors is:

θnew
u ← (λy ∑

i
puiβiβ

>
i + λθ IK)

−1(∑
i

λy puiyuiβi) (5.4)

βnew
i ← (λy ∑

u
puiθuθ>u + λβ IK)

−1(∑
u

λy puiyuiθu), (5.5)

Again, this looks very similar to the alternating least squares update of wmf, which reveals the close
connection between ExpoMF and wmf.

5.2.3.1 Inference for the exposure prior µui

We now present inference for the hierarchical variants of ExpoMF. In particular we highlight the
updates to µui under the various models we presented in Section 5.2.2.

Update for per-item µi. Maximizing the log-likelihood with respect to µi is equivalent to finding
the mode of the complete conditional Beta(α1 + ∑u pui, α2 + U −∑u pui), which is:

µi ←
α1 + ∑u pui − 1
α1 + α2 + U − 2

(5.6)

Update for exposure covariates (topics, location). Setting µui = σ(ψ>u xi), where xi is given by
pre-processing (topic analysis or location clustering), presents us with the challenge of maximizing
the log-likelihood with respect to exposure model parameters ψu. Since there is no analytical solution
for the mode, we resort to following the gradients of the log-likelihood with respect to ψu,

ψnew
u ← ψu + η∇ψuL, (5.7)

for some learning rate η, where

∇ψuL =
1
I ∑

i
(pui − σ(ψ>u xi))xi.

This can be computationally challenging especially for large item-set sizes I. Therefore, we perform
(mini-batch) stochastic gradient descent: at each iteration t, we randomly subsample a small batch of
items Bt and take a noisy gradient steps:

ψnew
u ← ψu + ηt g̃t (5.8)

for some learning rate ηt, where

g̃t =
1
|Bt| ∑

i∈Bt

(pui − σ(ψ>u xi))xi.

For each em iteration, we found it sufficient to do a single update to the exposure model parameter ψu
(as opposed to updating until it reaches convergence). This partial M-step (Neal and Hinton, 1998) is
much faster in practice.
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Algorithm 6: Expo-ALS Inference for ExpoMF

Input: Click matrix Y , exposure covariates x1:I (topics or locations, optional)
Output: User latent factors θ1:U , item latent factors β1:I , exposure priors µ1:I (for per-item µi), OR

exposure model parameters ψ1:U (with exposure model)
Random initialization: θ1:U , β1:I , µ1:I , OR ψ1:U
while performance on validation set increases do

Compute expected exposure A (Eq. 5.3)
Update user factors θ1:U (Eq. 5.4)
Update item factors β1:I (Eq. 5.5)
if ExpoMF with per-item µi then

Update priors µi (Eq. 5.6)
end
if ExpoMF with exposure model µui = σ(ψ>u xi) then

Update coefficients ψu (Eq. 5.7 or Eq. 5.8)
end

end
return θ1:U , β1:I , µ1:I , OR ψ1:U

5.2.3.2 Complexity and implementation details

A naive implementation of the wmf has the same complexity as ExpoMF in terms of updating the
user and item factors. However, the trick that is used to speed up computations in wmf described
in Section 2.2.2.2 cannot be applied to ExpoMF due to the non-uniformness of the exposure latent
variable aui. On the other hand, the factor updates are still independent across users and items. These
updates can therefore easily be parallelized.

In ExpoMF’s implementation, explicitly storing the exposure matrix A is impractical for even medium-
sized datasets. As an alternative, we perform the E-step on the fly: only the necessary part of the
exposure matrix A is constructed for the updates of the user/item factors and exposure priors µui.
As shown in Section 5.4, with parallelization and the on-the-fly E-step, ExpoMF can be easily fit to
medium-to-large datasets.3

5.2.4 Prediction

In matrix factorization collaborative filtering the prediction of yui is given by the dot product between
the inferred user and item factors θ>u βi. This corresponds to the predictive density of ExpoMF
p(yui |Y) using point mass approximations to the posterior given by the em algorithm4. However,
ExpoMF can also make predictions by integrating out the uncertainty from the exposure latent variable

3The source code to reproduce all the experimental results is available at: https://github.com/dawenl/expo-mf.
4This quantity is also the treatment effect E [yui | aui = 1, θu, βi ] − E [yui | aui = 0, θu, βi ] in the potential outcomes

framework (see Section 2.3.1), since aui = 0 deterministically ensures yui = 0.

https://github.com/dawenl/expo-mf
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aui:

Ey[yui | θu, βi] = Ea
[
Ey[yui | θu, βi, aui]

]
= ∑

aui∈{0,1}
P(aui)Ey[yui | θu, βi, aui]

= µui · θ>u βi

We experimented with both predictions in our study and found that the simple dot product works
better for ExpoMF with per-item µi while E [yui | θu, βi] works better for ExpoMF with exposure
covariates. We provide further insights about this difference in Section 5.4.6.1.

5.3 Related work

In this section we highlight connections between ExpoMF and other similar research directions.

Causal inference. Our work borrows ideas from the field of causal inference (Pearl, 2009; Imbens
and Rubin, 2015). Causal inference aims at understanding and explaining the effect of one variable
on another.

One particular aim of causal inference is to answer counterfactual questions. For example, “would this
new recommendation engine increase user click through rate?”. While online studies may answer such
a question, they are typically expensive even for large electronic commerce companies. Obtaining
answers to such questions using observational data alone (e.g., log data) is therefore of important
practical interest (Bottou et al., 2013; Li et al., 2010; Swaminathan and Joachims, 2015).

We establish a connection with the potential outcome framework of Rubin (1974). In this framework
one differentiates the assignment mechanism, whether a user is exposed to an item, from the potential
outcome, whether a user consumes an item. In potential outcome terminology our work can thus be
understood as a form a latent assignment model. In particular, while consumption implies exposure,
we do not know which items users have seen but not consumed. Further the questions of interest to
us, personalized recommendation, depart from traditional work in causal inference which aims at
quantifying the effect of a particular treatment (e.g., the efficacy of a new drug).

Biased CF models. Authors have recognized that typical observational data describing user rating
items is biased toward items of interest. Although this observation is somewhat orthogonal to our
investigation, models that emerged from this line of work share commonalities with our approach.
Specifically, Marlin et al. (2007); Ling et al. (2012) separate the selection model (the exposure matrix)
from the data model (the matrix factorization). However, their interpretation, rooted in the theory of
missing data (Little and Rubin, 1986), leads to a much different interpretation of the selection model.
They hypothesize that the value of a rating influences whether or not a user will report the rating (this
implicitly captures the effect that users mostly consume items they like a priori). This approach is
also specific to explicit feedback data. In contrast, we model how (the value of) the exposure matrix
affects user rating or consumption.

Modeling exposure with random graphs. The user-item interaction can also be encoded as a
bipartite graph. Paquet and Koenigstein (2013) model exposure using a hidden consider graph. This
graph plays a similar role as our exposure variable. One important difference is that during inference,
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instead of directly inferring the posterior as in ExpoMF (which is computationally more demanding),
an approximation is developed whereby a random consider graph is stochastically sampled.

Exposure in other contexts. In zero-inflated Poisson regression, a latent binary random variable,
similar to our exposure variable is introduced to “explain away” the structural zeros, such that the
underlying Poisson model can better capture the count data (Lambert, 1992). This type of model is
common in Economics where it is used to account for overly frequent zero-valued observations.

ExpoMF can also be considered as an instance of a spike-and-slab model (Ishwaran and Rao, 2005)
where the “spike” comes from the exposure variables and the matrix factorization component forms
the flat “slab” part.

Versatile CF models. As we show in Section 5.2.2, ExpoMF’s exposure matrix can be used to model
external information describing user and item interactions. This is in contrast to most CFmodels which
are crafted to model a single type of data (e.g., document content when recommendation scientific
papers (Wang and Blei, 2011)). An exception is factorization machines (FM) of Rendle (2010). FM
models all types of (numeric) user, item or user-item features. FM considers the interaction between
all features and learns specific parameters for each interaction.

5.4 Empirical study

In this section we study the recommendation performance of ExpoMF by fitting the model to several
datasets. We provide further insights into ExpoMF’s performance by exploring the resulting model
fits. We highlight that:

• ExpoMF performs comparably better than the state-of-the-art wmf Hu et al. (2008) on four
datasets representing user clicks, checkins, bookmarks and listening behavior.

• When augmenting ExpoMF with exposure covariates its performance is further improved.
ExpoMF with location covariates and ExpoMF with content covariates both outperform the
simpler ExpoMF with per-item µi. Furthermore, ExpoMF with content covariates outperforms
ctr (Wang and Blei, 2011), a state-of-the-art document recommendation model.

• Through posterior exploration we provide insights into ExpoMF’s user-exposure modeling.

5.4.1 Datasets

Throughout this study we use four medium to large-scale user-item consumption datasets from various
domains: 1) taste profile subset (TPS) of the million song dataset (Bertin-Mahieux et al., 2011); 2)
scientific articles data from arXiv; 3) user bookmarks from Mendeley5; and 4) check-in data from the
Gowalla dataset (Cho et al., 2011). In more details:

• Taste Profile Subset (TPS): contains user-song play counts collected by the music intelligence
company Echo Nest.6 We binarize the play counts and interpret them as implicit preference.
We further pre-process the dataset by only keeping the users with at least 20 songs in their
listening history and songs that are listened to by at least 50 users.

5http://mendeley.com
6http://the.echonest.com

http://mendeley.com
http://the.echonest.com
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TPS Mendeley Gowalla ArXiv
# of users 221,830 45,293 57,629 37,893
# of items 22,781 76,237 47,198 44,715

# interactions 14.0M 2.4M 2.3M 2.5M
% interactions 0.29% 0.07% 0.09% 0.15%

Table 5.1: Attributes of datasets after pre-processing. Interactions are non-zero
entries (listening counts, clicks, and checkins). % interactions refers to the density
of the user-item click matrix (Y).

• ArXiv: contains user-paper clicks derived from log data collected in 2012 by the arXiv pre-print
server. Multiple clicks by the same user on the same paper are considered to be a single click.
We pre-process the data to ensure that all users and items have a minimum of 10 clicks.

• Mendeley: contains user-paper bookmarks as provided by the Mendeley service, a “reference
manager”. The behavior data is filtered such that each user has at least 10 papers in her library
and the papers that are bookmarked by at least 20 users are kept. In addition this dataset contains
the content of the papers which we pre-process using standard techniques to yield a 10K words
vocabulary. In Section 5.4.6.1 we make use of paper content to inform ExpoMF’s exposure
model.

• Gowalla: contains user-venue checkins from a location-based social network. We pre-process
the data such that all users and venues have a minimum of 20 checkins. Furthermore, this dataset
also contains locations for the venues which wewill use to guide location-based recommendation
(Section 5.4.6.2).

The important attributes of these datasets are summarized in Table 5.1.

5.4.2 Experimental setup

For each dataset we randomly split the observed user-item interactions into training/test/validation sets
with 70/20/10 proportions. In all the experiments, the dimension of the latent space for collaborative
filtering model K is 100. The model is trained following the inference algorithm described in
Algorithm 6. We monitor the convergence of the algorithm using the truncated normalized discounted
cumulative gain (NDCG@100, see below for details) on the validation set. Hyper-parameters for
ExpoMF-based models and baseline models are also selected according to the same criterion.

To make predictions, for each user u, we rank each item using its predicted preference y∗ui = θ>u βi,
i = 1, · · · , I. We then exclude items from the training and validation sets and calculate all the metrics
based on the resulting ordered list. Further when using ExpoMF with exposure covariates we found
that performance was improved by predicting missing preferences according to E[yui|θu, βi] (see
Section 5.2.4 for details).
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5.4.3 Performance measures

To evaluate the recommendation performance, we report both Recall@k, a standard information
retrieval measure, as well as two ranking-specific metrics: mean average precision (MAP@k) and
NDCG@k.

We denote rank(u, i) as the rank of item i in user u’s predicted list and ytest
u as the set of items in the

heldout test set for user u.

• Recall@k: For each user u, Recall@k is computed as follows:

Recall@k = ∑
i∈ytest

u

I{rank(u, i) ≤ k}
min(k, |ytest

u |)

where I{·} is the indicator function. In all our experiments we report both k = 20 and
k = 50. This is slightly different from the metric we used in Section 4.4.2: the expression in
the denominator evaluates to the minimum between k and the number of items consumed by
user u. In this way, Recall@k is normalized to have a maximum of 1. This corresponds to
successfully retrieving all the relevant items in top k of the list. We do not report Precision@k
due to the noisy nature of the implicit feedback data: even if an item i /∈ ytest

u , it is possible that
the user will consume it in the future. This makes Precision@k less interpretable since it is
prone to fluctuations.

• MAP@k: Mean average precision calculates the mean of users’ average precision. The (trun-
cated) average precision for user u is:

Average Precision@k =
k

∑
n=1

Precision@n
min(n, |ytest

u |)
.

• NDCG@k: Similar to the untruncated NDCG that we used in Section 4.4.2, it emphasizes the
importance of the top ranks by logarithmically discounting ranks. NDCG@k for each user is
computed as follows:

DCG@k =
k

∑
i=1

2reli − 1
log2(i + 1)

; NDCG@k =
DCG@k
IDCG@k

IDCG@k is a normalization factor that ensures NDCG lies between zero and one (perfect
ranking). In the implicit feedback case the relevance is binary: reli = 1 if i ∈ ytest

u , and 0
otherwise. In our study we always report the averaged NDCG across users.

For the ranking-based measure in all the experiments we set k = 100 which is a reasonable number
of items to consider for a user. Results are consistent when using other values of k.

5.4.4 Baselines

We compare ExpoMF to wmf, the standard state-of-the-art method for collaborative filtering with
implicit data (Hu et al., 2008).
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TPS Mendeley Gowalla ArXiv
WMF ExpoMF WMF ExpoMF WMF ExpoMF WMF ExpoMF

Recall@20 0.195 0.201 0.128 0.139 0.122 0.118 0.143 0.147
Recall@50 0.293 0.286 0.210 0.221 0.192 0.186 0.237 0.236
NDCG@100 0.255 0.263 0.149 0.159 0.118 0.116 0.154 0.157
MAP@100 0.092 0.109 0.048 0.055 0.044 0.043 0.051 0.054

Table 5.2: Comparison between WMF (Hu et al., 2008) and ExpoMF. While the
differences in performance are generally small, ExpoMF performs comparably better
than WMF across datasets.

We also experimented with Bayesian personalized ranking (BPR) (Rendle et al., 2009), a ranking
model for implicit collaborative filtering which approximately optimizes the area under the ROC curve
(AUC). However preliminary results were not competitive with other approaches. BPR is trained using
stochastic optimization which can be sensible to hyper-parameter values (especially hyper-parameters
related to the optimization procedure). A more exhaustive search over hyper-parameters could yield
more competitive results.

We describe specific baselines relevant to modeling exposure covariates in their dedicated subsec-
tions.

5.4.5 Studying ExpoMF

Empirical evaluation. Results comparing ExpoMF towmf on our four datasets are given in Table 5.2.
Each metric is averaged across all the users. We notice that ExpoMF performs comparably better
than wmf on most datasets (the standard errors are on the order of 10−4) though the difference
in performance is small. In addition, higher values of NDCG@100 and MAP@100 (even when
Recall@50 is lower) indicate that the top-ranked items by ExpoMF tend to be more relevant to users’
interests.

Exploratory analysis. We now explore the posterior distributions of the exposure latent variables of
two specific users from the TSP dataset. This exploration provides insights into how ExpoMF infers
user exposure.

The top figure of Figure 5.2 shows the inferred exposure latent variable E[aui] corresponding to
yui = 0 for user A. E[aui] is plotted along with the empirical item popularity (measured by number of
times a song was listened to in the training set). We also plot the interpolated per-item exposure prior
µi learned using Eq. 5.6. There is a strong relationship between song popularity and consideration
(this is true across users). User A’s training data revealed that she has only listened to songs from
either Radiohead or Interpol (both are alternative rock bands). Therefore, for most songs, the model
infers that the probability of user A considering them is higher than the inferred prior, i.e., it is more
likely that user A did not want to listen to them (they are true zeros). However, as pointed out by the
rectangular box, there are a few “outliers” which mostly contain songs from Radiohead and Interpol
that user A did not listen to (some of them are in fact held out in the test set). Effectively, a lower
posterior E[aui] than the prior indicates that the model downweights these unlistened songs more. In
contrast, wmf downweights all songs uniformly.
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Figure 5.2: We compare the inferred posteriors of the exposure matrix for two users
(denoted by blue dots) and compare against the prior probability for exposure (red
dashed lined). On the top, user A is a fan of the bands Radiohead and Interpol.
Accordingly, the model downweights unlistened songs from these two bands. User B
has broader interests and notably enjoys listening to the very popular band Florence
and the Machine. Similarly as for user A, unlistened tracks of Florence and the
Machine get downweighted in the posterior.

A second example is shown in the bottom figure of Figure 5.2. User B mostly listens to indie rock
bands (e.g. Florence and the Machine, Arctic Monkeys, and The Kills). “Dog Days are Over” by
Florence and the Machine is the second most popular song in this dataset, behind “Fireworks” by
Katy Perry. These two songs correspond to the two rightmost dots on the figure. Given the user’s
listening history, the model clearly differentiates these two similarly popular songs. The fact that user
B did not listen to “Dog Days are Over” (again in the test set) is more likely due to her not having
been exposed to it. In contrast the model infers that the user probably did not like “Fireworks” even
though it is popular.

5.4.6 Incorporating exposure covariates

Figure 5.2 demonstrates that ExpoMF strongly associates user exposure to item popularity. This
is partly due to the fact that the model’s prior is parametrized with a per-item term µi. (This also
explains why it is not a good idea to make a prediction with E[yui | θu, βi] = µui · θ>u βi for ExpoMF
without exposure covariates because it will be highly biased towards popular items.) Here we are
interested in using exposure covariates to provide additional information about the (likely) exposure
of users to items (see Figure 5.1b).

Recall that the role of these exposure covariates is to allow the matrix factorization component to
focus on items that the user has been exposed to. In particular this can be done in the model by
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ExpoMF Content ExpoMF ctr (Wang and Blei, 2011)

Recall@20 0.139 0.144 0.127
Recall@50 0.221 0.229 0.210
NDCG@100 0.159 0.165 0.150
MAP@100 0.055 0.056 0.049

Table 5.3: Comparison between Content ExpoMF and ExpoMF on Mendeley. We
also compare with ctr (Wang and Blei, 2011), a model makes use of the same
additional information as Content ExpoMF. (ctr is reviewed in Section 4.2.1.)

upweighting (increasing their probability of exposure) items that users were (likely) exposed to and
downweighting items that were not. A motivating example with restaurant recommendations and
New York City versus Las Vegas diners was discussed in Section 5.1.

In the coming subsections we compare content-aware and location-aware versions of ExpoMF which
we refer to as Content ExpoMF and Location ExpoMF respectively. Studying each model in its respec-
tive domain we demonstrate that the exposure covariates improve the quality of the recommendations
compared to ExpoMF with per-item µi.

5.4.6.1 Content covariates

Scientists—whether through a search engine, a personal recommendation or other means—have a
higher likelihood of being exposed to papers specific to their own discipline. In this section we study
the problem of using the content of papers as a way to guide inference of the exposure component of
ExpoMF.

In this use case, we model the user exposure based on the topics of articles. We use lda (Blei
et al., 2003), a model of document collections, to model article content. lda was briefly reviewed in
Section 4.2.1.

We use the topic proportion xi learned from the Mendeley dataset as exposure covariates. Following
the notation of Section 5.2.2, our hierarchical ExpoMF is:

µui = σ(ψ>u xi + γu)

where we include a per-user bias term γu. Under this model, a molecular biology paper and a computer
science paper that a computer scientist has not read will likely be treated differently: the model will
consider the computer scientist has been exposed to the computer science paper, thus higher E[aui],
yet not to the molecular biology paper (hence lower E[aui]). The matrix factorization component of
the model will focus on modeling computer science papers since that are more likely to be have been
exposed.

Our model, Content ExpoMF, is trained following the algorithm in Algorithm 6. For updating
exposure-related model parameters ψu and γu, we take mini-batch gradient steps with a batch-size of
10 users and a constant step size of 0.5 for 10 epochs.

Study. We evaluate the empirical performance of Content ExpoMF and report results in Table 5.3.
We compare to ctr, a state-of-the-art method for recommending scientific papers (Wang and Blei,
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2011) combining both lda and wmf.7 We did not compare with the more recent and scalable ctpf
(Gopalan et al., 2014) since the resulting performance differences may have been the result of ctpf
Poisson likelihood (versus Gaussian likelihood for both ExpoMF and wmf). Both ctr and ctpf
were reviewed in Chapter 4.

We note that ctr’s performance falls in-between the performance of ExpoMF and wmf (from
Table 5.1). ctr is particularly well suited to the cold-start case which is not the data regime we focus
on in this study (i.e., recall that we have only kept papers that have been bookmarked by at least 20
users).

Figure 5.3 highlights the behavior of Content ExpoMF compared to that of regular ExpoMF. Two
users are selected: User A (left column) is interested in statistical machine learning and Bayesian
statistics. User B (right column) is interested in computer systems. Neither of them have read “Latent
Dirichlet Allocation” (lda), a seminal paper that falls within user A’s interests. On the top row we
show the posterior of the exposure latent variables E[aui] for two users (user A and user B) inferred
from ExpoMF with per-item µi. lda is shown using a white dot. Overall both users’ estimated
exposures are dominated by the empirical item popularity.

In contrast, on the bottom row we plot the results of Content ExpoMF. Allowing the model to use the
documents’ content to infer user exposure offers greater flexibility compared to the simple ExpoMF
model. This extra flexibility may also explain why there is an advantage in using inferred exposure
to predict missing observations (see Section 5.2.4). Namely when exposure covariates are available
the model can better capture the underlying user exposures to items. In contrast using the inferred
exposure to predict with the simple ExpoMF model performs worse.

5.4.6.2 Location covariates

When studying the Gowalla dataset we can use venue location as exposure covariates.

Recall from Section 5.2.2 that location exposure covariates are created by first clustering all venues
(using k-means) and then finding the representation of each venue in this clustering space. Similarly
as in Content ExpoMF (Section 5.4.6.1), Location ExpoMF departs from ExpoMF:

µui = σ(ψ>u xi + γu)

where xik is the venue i’s expected assignment to cluster k and γu is a per-user bias term.8

Study. We train Location ExpoMF following the same procedure as Content ExpoMF. We report
the empirical comparison between wmf, ExpoMF and Location ExpoMF in Table 5.4. We note that
Location ExpoMF outperforms both wmf and the simpler version of ExpoMF.

For comparison purposes we also developed a simple baseline Filterwmf which makes use of the
location covariates. Filterwmf filters out venues recommended by wmf that are inaccessible (too
far) to the user. Since user location is not directly available in the dataset, we estimate it using the
geometric median of all the venues the user has checked into. The median is preferable to the mean

7Note that to train ctr we first learned a document topic model, fixed it and then learned the user preference model. It was
suggested by its authors that this learning procedure provided computational advantages while not hindering performance
significantly (Wang and Blei, 2011).

8We named Content ExpoMF and Location ExpoMF differently to make it clear to the reader that they condition on content
and location features respectively. Both models are in fact mathematically equivalent.
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Figure 5.3: We compare the inferred exposure posterior of ExpoMF (top row) and
Content ExpoMF (bottom row). On the left are the posteriors of user A who is
interested in statistical machine learning while on the right user B is interested in
computer system research. Neither users have read the “Latent Dirichlet Allocation”
paper. ExpoMF infers that both users have about equal probability of having been
exposed to it. As we discussed in Section 5.4.5 (and demonstrated in Figure 5.2) this is
mostly based on the popularity of this paper. In contrast, Content ExpoMF infers that
user A has more likely been exposed to this paper because of the closeness between
that paper’s content and user A’s interest. Content ExpoMF therefore upweights the
paper. Given user B’s interests the paper is correctly downweighted by the model.

WMF ExpoMF Location ExpoMF

Recall@20 0.122 0.118 0.129
Recall@50 0.192 0.186 0.199
NDCG@100 0.118 0.116 0.125
MAP@100 0.044 0.043 0.048

Table 5.4: Comparison between Location ExpoMF and ExpoMF with per-item µi
on Gowalla. Using location exposure covariates outperforms the simpler ExpoMF
and WMF according to all metrics.
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because it is better at handling outliers and is more likely to choose a typical visit location. However,
the results of this simple Filterwmf baseline are worse than the results of the regular WMF. We
attribute this performance to the fact that having a single focus of location is too strong an assumption
to capture visit behavior of users well. In addition, since we randomly split the data, it is possible
that a user’s checkins at city A and city B are split between the training and test set. We leave the
exploration of better location-aware baselines to future work.

5.5 Extensions

Besides the Content and Location ExpoMF from Section 5.4, in this section we further demonstrate
the versatility of the proposed ExpoMF model by incorporating exposure from various sources: 1)
authors of a paper; 2) friends in a social network. We also demonstrate the “plug-in” nature of
ExpoMF, showing how inference can be performed without much modification from the algorithm
we developed in Section 5.2.3.

5.5.1 Author exposure

In Section 5.4.6.1, we assume that whether or not a scientist is exposed to a particular paper depends
on the content of the paper. Here we make a different assumption: the exposure is dependent on
the authors who wrote the paper – this is a reasonable assumption, as understandably more famous
authors can get more attention because of their frames.

A straightforward model of author exposure would be to consider the author-paper matrix C ∈
{0, 1}A×I , where A is the total number of unique authors: cai = 1 if author a is included in the
author list of paper i and cai = 0 otherwise. We treat each column ci ∈ {0, 1}A as an exposure
covariates vector. Then we can fit this model in the same fashion as Content and Location ExpoMF,
where we learn ψ1:U for user’s exposure to authors.

However, there are two problems with this simple model: 1) Even though the inference is straightfor-
ward following Algorithm 6, it is almost impractical as it requires to store and constantly update a
U× A dense exposure coefficient matrix ψ1:U where A can be as large as tens of thousands. 2) More
importantly, this model does not take into account the influence from co-authorship. For example,
imagine Dave and John have written many papers together. If a user only read Dave’s papers, then
the above-mentioned exposure model will not consider a paper by John more likely to be exposed
comparing to the papers from some other random authors.

To overcome the second problem, we can learn a latent representation for each author by factorizing
the author-paper matrix C. Back to our example above, with this setup John and Dave will end up
being close in this learned latent space because of the similarity among co-authors. Consequently,
the user who only read Dave’s papers will also have higher likelihood of being exposed to John’s
papers.9

Let’s assume we have learned author latent representation xa (a = 1, · · · , A) from author-paper
matrix C. The author-aware version of ExpoMF (we refer to as Author ExpoMF) is specified with the

9This could potentially help with the same author with different name spellings, which is very common in the ArXiv dataset.
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ExpoMF Author ExpoMF

Recall@20 0.143 0.151
Recall@50 0.236 0.231
NDCG@100 0.157 0.160
MAP@100 0.054 0.058

Table 5.5: Comparison between Author ExpoMF and ExpoMF on ArXiv. We can
see that incorporating author exposure improves the recommendation performance
over the simple ExpoMF.

following hierarchical exposure prior (following the notation of Section 5.2.2):

µui = σ((
1
|Ai| ∑

a∈Ai

xa)
>ψu + γu),

where Ai is the set of authors of paper i and γu is again a user-dependent bias term. Here we take
the average of the author latent representations to account for various amount of authors per paper:
for ArXiv dataset that we analyzed, the number of authors per paper ranges from one to more than
150.

Model inference for Author Exposure is similar to that of Content and Location ExpoMF, as we can
treat 1

|Ai | ∑a∈Ai
xa as the exposure covariates. We use the same ArXiv dataset in Section 5.4 and

pre-process the author-paper matrix C by only keeping the authors with at least 2 papers, which gives
us A = 38, 627 unique authors. We learn the author latent representation xa with the Gaussian matrix
factorization (Section 2.2.2.1) only on the observed 1’s in the author-paper matrix C.

Quantitative results. We report the recommendation performance of Author ExpoMF in Table 5.5.
We also compare to ExpoMF (the results are copied from Table 5.2). For Author ExpoMF, we predict
the missing preferences according to E [yui | θu, βi]. As we can see, incorporating author exposure
improves the metrics over the simple ExpoMF, even though the difference in performance is generally
small. We note that by filtering out inactive authors, some papers will be considered having “zero”
authors, i.e., xa = 0 for ∀a ∈ Ai. This means that its exposure will be solely dependent on the
user-dependent bias term γu, which could be restrictive.

Exploratory analysis. To help develop intuition on how Author ExpoMF helps with recommendation
by making use of the author exposure, we look into a particular user who has read a couple of papers
about network analysis and social networks by Mark Newman. From the dataset, we can see that
Aaron Clauset has published quite a few papers with Mark Newman on the same topics, of which this
user hasn’t read any. The author latent representation xa for Mark Newman and Aaron Clauset are very
close with a cosine similarity of 0.85. Therefore, understandably Author ExpoMF recommends some
of Aaron Clauset’s papers on top of the recommended list. Furthermore, among these papers also
include the ones that Aaron Clauset wrote with authors other than Mark Newman. For comparison,
ExpoMF does not recommend any single paper fromAaron Clauset (except the one that he co-authored
with Mark Newman) among the top 50.
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5.5.2 Social network exposure

Users in a social network can be naturally influenced by their friends, e.g., we will be more likely to
try out a song if a friend we trust recommends it. There have been many collaborative filtering models
which exploits trust among friends in a social network (Ma et al., 2008, 2009, 2011; Guo et al., 2015;
Chaney et al., 2015). In this section, we develop a social-network-aware version of ExpoMF (Social
ExpoMF) where users’ exposure to items is influenced by their social friends.

Social ExpoMF takes a similar approach to SocialPF (Chaney et al., 2015) with the following generative
process:

θu ∼ N (0, λ−1
θ IK)

βi ∼ N (0, λ−1
β IK)

ãui ∼ Pois(λui)

aui = I{ãui > 0}
yui | aui = 1 ∼ N (θ>u βi, λ−1

y )

yui | aui = 0 ∼ δ0,

where λui = ∑v∈N(u) τuvyvi + γu + αi. N(u) is the set of users who are social friends with user
u. τuv can be interpreted as user v’s influence on user u, which is learned as part of the inference
procedure. We also include user- and item-dependent bias terms γu and αi. We constrain exposure
coefficients τuv, γu, and αi to be nonnegative, so that the rate λui to the Poisson-distributed random
variable ãui is also nonnegative.

How to interpret Social ExpoMF model? If τuv is high for user u, that means user u is more likely to
be exposed to the items that user v (a social friend of user u) clicked on. Equivalently, a small value
of τuv indicates that the items user v clicked on will not likely expose to user u. If user u and v do
not have any social overlap, then τuv = 0. It is reasonable to assume the entire coefficient matrix
τ = {τuv} ∈ RU×U

+ is very sparse in practice. Consequently, we add bias terms γ = {γu} ∈ RU
+

and α = {αi} ∈ RI
+ to capture the user- and item-level exposure patterns beyond the influence from

social friends.

Here we use a Poisson exposure model instead of the Bernoulli-logistic model that has been applied
to other ExpoMF variations. This is mostly for computational concerns, as the social network data
can be computationally demanding to work with. Gopalan et al. (2015) and Chaney et al. (2015) have
demonstrated that Poisson model has the computational advantages especially on sparse data.

5.5.2.1 A variational EM algorithm

The inference for Social ExpoMF is more complicated due to the censored Poisson exposure model.
We develop a variational em algorithm for efficient model inference, where in the E-step we compute
(approximate) the posterior of aui and in the M-step we update the exposure coefficients τuv, γu, and
αi via maximum likelihood estimation.

If we follow the general procedure of em algorithm in Section 2.1.1 and write down the objective
function, there will be a problematic term log P(aui = 1) = log(1− e−λui ) which prevents us
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from deriving closed-form coordinate updates. To work around it, we present a model augmentation
strategy.10

We first observe that 1− e−λ is the cumulative distribution function (cdf) of the Exponential(λ)
distribution evaluated at 1. Therefore, we can define an exponential distribution truncated at 1:

Exponential1(t; λ) =
λ

1− e−λ
e−λt, t ∈ [0, 1]

Furthermore, we define Exponential1(t; 0) = Unif[0, 1]. We augment the model with tui | aui ∼
Exponential1(tui; auiλui). Now the joint log-likelihood of aui and tui is:

log p(aui, tui) = aui(log λui − tuiλui)− λui(1− aui),

where the problematic term log(1− e−λui ) gets canceled.

E-step. The complete data log-likelihood is

L = ∑
u,i

aui logN (yui | θ>u βi, λ−1
y ) + aui(log λui − tuiλui)− λui(1− aui) + priors.

In the E-step, we use a variational distribution q(aui, tui) to approximate the true posterior. Since we
can compute the posterior expectation of aui exactly:

E [aui | θu, βi, λui, yui = 0] =
(1− e−λui ) · N (0|θ>u βi, λ−1

y )

(1− e−λui ) · N (0|θ>u βi, λ−1
y ) + e−λui

, (5.9)

we will only specify variational distribution for tui as q(tui) = Exponential1(tui; ρui). Define
pui = E [aui | θu, βi, λui, yui = 0] and without loss of generality, we set pui = 1 if yui > 0. We
tune the variational parameters ρ = {ρui} ∈ RU×I

+ to optimize the variational objective (elbo) for
tui:

LVIui = −puiEq[tui]λui + ρuiEq[tui]− log ρui + log(1− e−ρui ) + const.

where the necessary expectation is Eq[tui] =
1

ρui
− 1

eρui−1 . Take the derivative of elbo with respect
to ρui and set it to 0, we get the following updates for the variational parameters:

ρui ← puiλui (5.10)

M-step. The objective in the M-step is the expected complete data log-likelihood under the variational
distribution:

Eq[L] = ∑
u,i

pui logN (yui | θ>u βi, λ−1
y ) + pui(log λui −Eq[tui]λui)− λui(1− pui) + const..

The updates for collaborative filtering latent factors θu and βi are identical to all the previous models
(Eq. 5.4 and Eq. 5.5) because of the conditional independence between the exposure prior and the
matrix factorization part of the model (given exposure).

10The augmentation strategy presented here comes from an unpublished note by Matthew D. Hoffman.
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The updates for exposure coefficients τuv, γu, and αi are more difficult because of the problematic
term log λui = log(∑v∈N(u) τuvyvi + γu + αi). We follow the standard strategy to lower bound it
via Jensen’s inequality:

log( ∑
v∈N(u)

τuvyvi + γu + αi) ≥ ∑
v∈N(u)

φτ
uiv(log τuvyvi − log φτ

uiv)

+ φ
γ
ui(log γu − log φ

γ
ui) + φα

ui(log αi − log φα
ui)

where φτ
uiv ≥ 0, φ

γ
ui ≥ 0, φα

ui ≥ 0, and ∑v∈N(u) φτ
uiv + φ

γ
ui + φα

ui = 1. To tighten the lower bound,
we update φτ

uiv = τuvyvi
λui

, φ
γ
ui =

γu
λui

, and φα
ui =

αi
λui

. After lower-bounding the objective, we take the
gradients with respect to τuv, γu, and αi and set them to 0, which leads to the following multiplicative
updates:

τuv ←
∑i φτ

uiv pui

∑i yvi
(
1− pui(1−Eq[tui])

)
γu ←

∑i φ
γ
ui pui

∑i
(
1− pui(1−Eq[tui])

)
αi ←

∑u φα
ui pui

∑u
(
1− pui(1−Eq[tui])

)
(5.11)

These updates closely resemble those of nmf with generalized kl-divergence loss function (Lee
and Seung, 2001). The full algorithm for Social ExpoMF is summarized in Algorithm 7. In actual
implementation, we perform on-the-fly E-step, similar to what was described in Section 5.2.3.2,
for both aui and tui, as well as parallelization when updating both latent factors (θ1:U , β1:I) and
exposure coefficients (τ, γ, α). This enables Social ExpoMF to tractably analyze large-scale user-item
interaction data with social networks.

Algorithm 7: Social-Expo-ALS Inference for Social ExpoMF

Input: Click matrix Y , social network N(u) for u = 1, . . . , U
Output: User latent factors θ1:U , item latent factors β1:I , exposure coefficients τ, γ, and α
Random initialization: θ1:U , β1:I , τ, γ, α
while performance on validation set increases do

Compute expected exposure P = {pui} (Eq. 5.9)
Update variational parameter ρ = {ρui} (Eq. 5.10)
Update user factors θ1:U (Eq. 5.4)
Update item factors β1:I (Eq. 5.5)
Update exposure coefficients τ, γ, and α (Eq. 5.11)

end
return θ1:U , β1:I , τ, γ, α

Data. We evaluate Social ExpoMF on Douban dataset (Ma et al., 2011). Douban (douban.com) is a
Chinese social service where users record ratings for music, movies, and books. It contains 129K
users and 57K items with 16M user-item interactions in the form of ratings on a 1-5 scale. The social
network is undirected (i.e., if user v is user u’s social friend, then the reverse is true) with 1.3M
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ExpoMF Social ExpoMF

Recall@20 0.205 0.208
Recall@50 0.306 0.320
NDCG@100 0.225 0.230
MAP@100 0.087 0.086

Table 5.6: Comparison between Social ExpoMF and ExpoMF on Douban dataset.
We can see that incorporating social network exposure improves the recommendation
performance over the simple ExpoMF.

network connections. Following the experimental setup in Chaney et al. (2015), we remove network
connections where the users have no items in common. Furthermore, we binarize the explicit ratings
by only keeping ratings greater than or equal to 4 and treat them as implicit preferences.

Quantitative results. We evaluate the empirical performance of Social ExpoMF and report results
in Table 5.6. We compare to the ExpoMF with per-item µi exposure prior. We can see that Social
ExpoMF outperforms ExpoMF except on MAP@100. This indicates that incorporating exposure
based on social network provides additional benefits on top of simple popularity-based exposure
model. Unfortunately due to privacy reasons, most of the public user-item interaction datasets with
social network do not have meta-data information about users and/or items, which prevents us from
exploring the resulting model fit.

5.6 Summary

In this chapter, we presented a novel collaborative filtering mechanism that takes into account user
exposure to items. In doing so, we theoretically justify existing approaches that downweight unclicked
items for recommendation, and provide an extendable framework for specifying more elaborate models
of exposure based on logistic regression. In empirical studies we found that the additional flexibility
of our model helps it outperform existing approaches to matrix factorization on four datasets from
various domains. We also demonstrate the versatility of our model by incorporating other sources of
exposure, e.g., the authors of a paper, or the friends in a social network.

There are several promising avenues for future work. Consider a reader who keeps himself up to date
with the “what’s new” pages of a website, or a tourist visiting a new city looking for a restaurant
recommendation. The exposure processes are more dynamic in these scenarios and may be different
during training and test time. We therefore seek new ways to capture exposure that include ever more
realistic assumptions about how users interact with items.

Finally, we would like to evaluate our proposed model in a more realistic setting, e.g., in an online
environment with user interactions. It would be instructive to evaluate the performance of ExpoMF
in environments where it may be possible to observe items which users have been exposed to.
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Chapter 6

Causal Inference for
Recommendation

In this chapter, we move from implicit data to explicit data and develop a causal inference approach
to recommender systems. Observational recommendation data contains two sources of information:
which items each user decided to look at and which of those items each user liked. We assume these
two types of information come from different models—the exposure data comes from a model by
which users discover items to consider; the click data comes from a model by which users decide
which items they like. Traditionally, recommender systems use the click data alone (or ratings data)
to infer the user preferences. But this inference is biased by the exposure data, i.e., that users do not
consider each item independently at random. We use causal inference to correct for this bias. On
real-world data, we demonstrate that causal inference for recommender systems leads to improved
generalization to new data.

6.1 Introduction

The goal of recommender systems is to infer users’ preferences for items and then to predict items
that users will like. We develop a causal inference approach to this problem.

Here is the idea. Observational recommendation data contains two sources of information (see the
definition of observational data in Section 2.3.2): which items each user decided to look at and which
of those items each user liked. For example, one of the data sets we analyze contains which movies
each user watched and which of them each liked; another contains which scientific abstracts each user
saw and which PDFs each decided to download.

We assume these two types of information come from different models—the exposure data comes
from a model by which users discover items to consider; the click data comes from a model by which
users decide which items they like. Traditionally, recommender systems use the click data alone (or
ratings data) to infer the user preferences. But this inference is biased by the exposure data, i.e., that
users do not consider each item independently at random.
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We use causal inference to correct for this bias. First, we estimate the exposure model from the
exposure data, a model of which items each user is likely to consider. Then we fit the preferences
with weighted click data, where each click (or skip) is weighted by the inverse probability of exposure
(from the exposure model). This is a propensity weighting approach to causal inference (Imbens
and Rubin, 2015), i.e., we warp the observational click data as though it came from an “experiment”
where users are randomly shown items. We study several variants of this strategy.

Why might this work? Consider the film enthusiast (from our data) who mostly watches popular
drama but has also enjoyed a couple of documentaries (“Crumb” and “The Cruise”). A classical
recommendation system will infer film preferences that center around drama. Our causal method
detects a preference for drama too, but further up-weights the preference for documentaries. The
reason is that the history of the user indicates that she is unlikely to have been exposed to many
documentaries; the method values its signal from the two she did like. Consequently, when we
recommend from among the unwatched films, our method promotes documentaries (“Fast, Cheap &
Out of Control” and “Paris Is Burning”) that the user (in held-out data) also liked. Across users, on
real-world data, we demonstrate that causal inference for recommender systems leads to improved
generalization to new data.

6.1.1 Related work

Marlin and Zemel (2009) first formalized statistical models for correcting rating-selection bias.
They posit that a user’s decision to rate an item depends on the user’s opinion of the item. They
propose a mechanism to correct for this self-selection bias, based first on generating a rating and
then conditionally on whether the rating is observed. Others have proposed different rating models
using this same mechanism (Ling et al., 2012; Hernández-Lobato et al., 2014). In contrast, our model
(similar to ExpoMF (Liang et al., 2016b) from Chapter 5) first generates each user’s exposure to an
item and then her rating. Unlike ExpoMF, we work with explicit click data in this chapter. Thus we
can use causal inference to de-bias the resulting inference of user preferences.

Solving recommendations using causality has been explored in the multi-arm bandit literature (e.g.,
Li et al. (2010); Vanchinathan et al. (2014); Zhao et al. (2013); Li et al. (2015)). They focus on
unbiased evaluation of a recommendation policy, though using biased data (e.g., data collected in
web log). This work typically uses importance sampling, weighting the probability of each observed
click under the logging policy and under the (new) recommendation policy. We use the same tools for
data re-weighting—propensity score weighting is equivalent to importance sampling—but we reason
about preferences rather than recommendation policies. Further we work in a batch learning setting
(as opposed to online learning).

The recent work of Schnabel et al. (2016) is closest to what we present in this chapter. The authors
propose a causal inference approach to learning unbiased estimators from biased rating data. One
important difference with our work is that their propensity weights depend on user preferences (either
directly through ratings or indirectly through user and item covariates)—a process known as self-
selection—rather than reflecting exposure, as in our work. Their formalization of the problem also
differs: they appeal to empirical risk minimization while we take a Bayesian perspective.



6. Causal Inference for Recommendation 69

6.2 A causal model for recommendation

In this section we develop our method. We describe explicit recommendation data, a joint model of
exposure and clicks, how we do prediction, and how we do causal inference.

6.2.1 Data

Our data are explicit data: we know which items each user saw and which of those items each clicked
(liked) or skipped (disliked). For example, in Section 6.4 we analyze a large collection of click data
from arXiv.org. We know which arXiv abstracts a user has viewed and, among those, which PDFs
she has downloaded. Our goal is to infer each user’s latent preferences for items and then to use those
preferences in a recommendation system.

We begin with notation for the data. There are two types of observations. The exposure data is aui,
whether user u had the opportunity to click on item i. The click data is yui, an indicator of whether
user u clicked on item i (liked) or decided to skip the item (disliked). This is the explicit counterpart
of the setup in Chapter 5.

These data capture the users’ clicks. There are some items which a user was exposed to (aui = 1) but
did not click on (yui = 0); there are other items that a user was exposed to (aui = 1) and did click on
(yui = 1); finally, there are items that a user was not exposed to (aui = 0) and, by definition, did not
click on (yui = 0). A user cannot click on an item she is not exposed to.

6.2.2 Joint models of exposure and clicks

We build a joint model of the data described in Section 6.2.1: an exposure model of what the user
sees and a click model of what the user clicks on, conditional on her seeing it. The key idea behind
our approach is this. Given observational data, i.e., data collected by users exploring information and
clicking on items, classical inference of the click model—of the user’s preferences for clicking on
items that she is exposed to—is incorrect because of the biases induced by the exposure model. We
take a causal inference approach to this problem: we infer the user’s preferences from an imagined
experiment where each item is exposed with equal probability.

We first describe the observation joint, from which we observe our data set.

aui ∼ f (· |πui)

yui | aui = 0 ∼ δ0(·)
yui | aui = 1 ∼ g(· | µui).

Here the exposure and click models are generic. Each is governed by the exposure parameter πui and
click parameter µui, respectively.

For example, one exposure model we study is a Bernoulli with an item-specific parameter. We call
this the popularity exposure because it allows some items to be more likely to be exposed (across
users) than others,

aui ∼ Bernoulli(ρi). (Popularity exposure) (6.1)
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Alternatively, the exposure model can capture a user’s preferences for seeking out items. We will also
study Poisson factorization,

aui ∼ Poisson(π>u γi), (Poisson factorization exposure) (6.2)

which finds non-negative embeddings for users and items (Gopalan et al., 2015).1

For the click model, we use classical probabilistic matrix factorization (Salakhutdinov and Mnih,
2008) in Section 2.2.2.1. Conditional on being exposed, the click comes from a normal distribution,
yui | aui = 1 ∼ N (θ>u βi, λ−1

y ). Here θu is a latent K-vector of user preferences and βi is a latent
K-vector of item attributes. In all models, the conditional distribution of a click yui given that a user
is not exposed to the item (aui = 0) is a point mass at zero.

6.2.3 Forming predictions

Our goal is to use this model to form future predictions about the users. We are given observed data
D = {(aui, yui)} of what each user was exposed to and what each user clicked on. We want to predict
what we should expose them to in the future, i.e., what they would like to see.

We will study two ways of predicting. One is to form conditional predictions as the probability that a
user clicks on an item given that she is exposed to it,

E [yui | aui = 1,D] . (Conditional prediction) (6.3)

Alternatively, we use marginal predictions, where we marginalize out the exposure variable

E [yui | D] = p(aui | µui,D)E [yui | aui = 1,D] . (Marginal prediction) (6.4)

The marginal prediction uses that yui = 0 when aui = 0. It is apt when the exposure model also
contains information about the user, i.e., information about what the user is likely to seek out.

Note that these methods require approximating the posterior predictive distribution of yui and aui
given the data. We now turn to this inference problem.

6.2.4 Causal inference for recommendation

One way to solve the inference problem is with classical Bayesian inference, where we condition on
the observed data and then use posterior prediction to recommend items. But there is an issue with
using classical Bayesian inference to form recommendations: the data we observe Dobs is not the
data from which we would like to infer the user’s preferences and item attributes, i.e., the click model.
The reason is that the exposure model—the distribution that governs what each user sees—biases
our inference about the click model. Items that users are likely to be exposed exert too much of an
influence; items that users are rarely exposed to have too little influence.

1Though Poisson models capture count data, they are effective for binary data with many items (Gopalan et al., 2015).
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Ideally, we would infer preferences from an experiment, a model that randomly exposed each user to
items and then recorded which items each one click on. We call this the intervention joint,

aui ∼ Bernoulli(π)

yui | aui = 0 ∼ δ0(·)
yui | aui = 1 ∼ g(· | µui).

In this model, we have intervened on the mechanism from which users are exposed to items. (This is
the “mutilated model” (Pearl, 2009).) Data from this model leads to better estimates of the click model
(i.e., their preferences) and better generalization to the items that they will want to click on.

This is a causal approach to the problem. The observation joint is the model of how we collected
the data; the intervention joint is a model of a randomized experiment that would (in theory) help us
make the inferences that we need. The challenge is to use data from the observation joint to perform
inference in the intervention joint.

How do we solve this problem? Assume for now that the exposure model is known and is the popularity
model, i.e., aui ∼ Bernoulli(ρi). We will use inverse propensity weighting (Imbens and Rubin,
2015), which takes samples from the observation joint and weights them to look like samples from the
intervention joint; this is essentially an importance sampling technique. Specifically, we weight each
observation (aui, yui) by 1/ρi to estimate θu. (Because of the click model, this estimate only relies
on those data where aui = 1.) When inferring a user’s preferences, this down-weights the influence
of popular items and up-weights the influence of unpopular items.

More formally, our goal is to obtain a data set D = {(aui, yui)} from the intervention joint and then
estimate p(θu | D). We define the “do dataset” to be the observed data embellished with weights,
Ddo = {(aui, yui, wui)}. The posterior is

p(θu | Ddo) ∝ p(θu)∏
i

p(yui | aui)
wui (6.5)

Intuitively, this assumes that we see each data point “wui times”, and that the clicks are conditionally
independent given the preferences.

How is this different from standard causality? One way is that, in typical causal settings, we have
a single causal question (Imbens and Rubin, 2015). Here we have many causal questions (one per
user-item pair). What is crucial is that the causal outcomes are related, each governed by the same set
of parameters.

6.3 Inference

We first estimate the exposure model from the observed data. This can be the popularity model or
Poisson factorization. Then, we use the fitted exposure model to weight the data (by the inverse
probability) and fit the click model. Finally we use the posterior distribution of the exposure model
and (causal) posterior distribution of the click model to form predictions. This procedure generalizes
better than Bayesian inference, especially under intervention, i.e., when we change the distribution of
which items a user is exposed to.
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6.3.1 Fitting exposure model

Popularity model. For popularity exposure model aui ∼ Bernoulli(ρi), we obtain the maximum
likelihood estimate ρ̂i by counting the portion of the users who have been exposed to item i. The
propensity score in this case is fixed across users:

πui = ρ̂i, ∀u ∈ {1, . . . , U}. (6.6)

Poisson factorization model. For Poisson factorization exposure model aui ∼ Pois(π>u γi) with
gamma prior on the latent embeddings πu and γi, we perform standard variational inference (Gopalan
et al., 2015) on the exposure data aui. After obtaining the optimal variational distribution q on πu
and γi at convergence, we compute the propensity score,

πui = 1−P{aui = 0} = 1− exp{−Eq

[
π>u γi

]
}. (6.7)

6.3.2 Fitting click model

The click model is a matrix factorization yui | aui = 1 ∼ N (θ>u βi, λ−1
y ). Following Section 2.2.2.1,

we place a diagonal normal prior on both user preference θu ∼ N (0, λ−1
θ IK) and item attributes

βi ∼ N (0, λ−1
β IK). To fit the model, we compute the maximum a posteriori estimates of the

parameters θu and βi. Concretely, the objective for the inverse propensity weighted Gaussian matrix
factorization model (Eq. 6.5) is:

L = − ∑
(u,i)∈O

1
2πui

(yui − θ>u βi)
2 − λθ

2 ∑
u
‖θu‖2

2 −
λβ

2 ∑
i
‖βi‖2

2,

where the propensity score πui can be obtained by either Eq. 6.6 or Eq. 6.7. The observed set O
contains all the entries with aui = 1. Similar to wmf, we can obtain the following coordinate updates
by taking the gradients with respect to θu and βi and setting them to 0:

θnew
u ← ( ∑

i:(u,i)∈O

1
πui

βiβ
>
i + λθIK)

−1( ∑
i:(u,i)∈O

1
πui

yuiβi) (6.8)

βnew
i ← ( ∑

u:(u,i)∈O

1
πui

θuθ>u + λβIK)
−1( ∑

u:(u,i)∈O

1
πui

yuiθu) (6.9)

The full algorithm for the inverse propensity weighted Gaussian matrix factorization is summarized in
Algorithm 8. Note that this algorithm only includes options for fitting the model causally (Eq. 6.5). In
Section 6.4, we empirically explore different combinations of the exposure model, prediction method,
and fitting procedures.
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Algorithm 8: IPW-ALS Alternating least squares for the inverse propensity weighted Gaussian matrix
factorization

Input: A set of observed entires in the click matrix {yui : (u, i) ∈ O}, regularization parameters λθ

and λβ

Output: A set of user latent factors θ1:U and item latent factors β1:I
Fit exposure model to compute the propensity score (Eq. 6.6 or Eq. 6.7)
Randomly initialize θ1:U , β1:I
while not converged do

for u← 1 to U do
Update user factor θu (Eq. 6.8)

end
for i← 1 to I do

Update item factor βi (Eq. 6.9)
end

end
return θ1:U , β1:I

6.4 Empirical study

We studied causal recommender systems on several data sets. We compared models trained obser-
vationally with models trained causally; we compared predictions made marginally and those made
conditional on exposure; we studied and evaluated different exposure models, both those based on
popularity and based on personalized preferences; and we studied typical test sets and test sets that
focus on rare items.

We highlight the following results:

• Poisson factorization (Eq. 6.2) is a better exposure model than the one based on item popularity
(Eq. 6.1). We evaluate the exposure model both as a standalone model to predict held-out
exposure and as a component in the whole recommender system.

• When the test set focuses on rare items, fitting causally (Eq. 6.5) gives better generalization
than classical inference. Causal inference is important for generalizing to situations that we do
not see in training.

• Accounting for exposure is important when making prediction—recommendation with marginal
prediction (Eq. 6.4) significantly boosts the ranking-based recommendation performance.

We give details below. We describe the data, methods, metrics, and results.

6.4.1 Datasets

We study three types of data (and four data sets):
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ML-1M ML-10M Yahoo-R3 ArXiv
# of users 6,040 69,878 15,400 26,541
# of items 3,706 10,677 1,000 80,082
# of exposures 1.0M 10.0M 0.3M 1.9M
% of exposures 4.47% 1.34% 2.02% 0.09%

Table 6.1: Attributes of the data. # of exposures is the number of entries with
aui = 1 (rated an item, viewed an abstract). % of exposure refers to the density of
the user-item exposure matrix.

• MovieLens (ML-1M andML-10M).User-movie ratings collected from a movie recommendation
service.2 The ratings are on a 1–5 scale.

• Yahoo-R3. Music ratings collected from Yahoo! Music services (Marlin and Zemel, 2009).
The ratings are 1–5.

• ArXiv. User-paper clicks from the 2012 log-data of the arXiv pre-print server. The data are
binarized: multiple clicks by the same user on the same paper are considered to be a single
click. This data contains which papers a user downloaded and which she only read the abstract.

For ML-1M, ML-10M, and Yahoo-R3, we denote exposure aui = 1 as user u having rated item i.
These three datasets are typically used for rating prediction. Because our end goal is recommendation,
we binarize the ratings and encode preferences as being either positive or negative (yui = 1 if
rating is greater than or equal to 3 and yui = 0 otherwise). This type of binarization gives better
recommendation performance than directly using predicted ratings (Hu et al., 2008).3

In ArXiv we denote exposure aui = 1 as user u having viewed the abstract of paper i. Among papers
that a user is exposed to, we set yui = 1 if she downloaded the paper and yui = 0 otherwise.

Table 6.1 summarizes the important attributes of our four datasets.

Data pre-processing. For each dataset, we create two training/validation/test splits: regular (REG)
and skewed (SKEW). We create a regular split by randomly selecting the exposed items for each user
into training/validation/test sets, following 70/10/20 proportions. In the regular split, the test set has
the same exposure distribution as the training and validation sets. This is how researchers typically
evaluate recommendation models (with observational data).

The skewed split rebalances the splits to better approximate an intervention. We create it by first
sampling a test set with roughly 20% of the total exposures, such that each item has uniform probability.
Training and validation sets are then created from the remaining data (as in a regular split) with 70/10
proportions. For a skewed split, the test set will have a completely different exposure distribution
from the training and validation sets. We use this split to demonstrate that causal inference for
recommendation leads to improved generalization performance.

Figure 6.1 shows the scatter plots of the training exposure distribution (reflected by the empirical item
popularity) against the test exposure distribution on regular and skewed splits of the ML-1M dataset.
The empirical item popularity is computed by counting the number of users who have been exposed

2http://grouplens.org/datasets/movielens/
3We note that the Yahoo! data set also contains a random test set, where a subset of the users are given 10 randomly selected

songs to rate. But most of the ratings for this random test set are below 3. Rather, we created a skewed test set.

http://grouplens.org/datasets/movielens/
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to each item. The skewed split has a roughly uniform exposure distribution across items, while in the
regular split, both training and test sets follow similar exposure patterns.
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Figure 6.1: Scatter plots of the training exposure distribution (reflected by the
empirical item popularity) against the test exposure distribution on REG (left) and
SKEW (right) splits for ML-1M dataset. SKEW split has a roughly uniform exposure
distribution across items, while in REG split both training and test sets follow similar
exposure patterns.

6.4.2 Methods

There are several choices in the proposed method. We explored combinations of the exposure model,
prediction method, and fitting procedure. The different choices are summarized below:

• Exposure model. Popularity (Pop, Eq. 6.1) or Poisson factorization (PF, Eq. 6.2).

• Prediction. Conditional prediction (Cond, Eq. 6.3) or marginal prediction (Mar, Eq. 6.4).

• Model fitting. Train the click model causally (CAU, Eq. 6.5), with inverse propensity weighting,
or observationally (OBS), with classical inference.

Among these methods are two baselines. The models that are trained observationally (OBS) with
conditional prediction (Cond) correspond to classical matrix factorization (Salakhutdinov and Mnih,
2008). The models that are trained causally (CAU) with conditional prediction (Cond) correspond to
inverse propensity weighted matrix factorization proposed in Schnabel et al. (2016).4 We note that
this approach significantly outperformed the previous state-of-the-art model proposed in Hernández-
Lobato et al. (2014) for the task of rating prediction (though the main focus of this chapter is on
recommendation).

Hyperparameters. We perform grid search using λθ ∈ {10−4, . . . , 104} and λβ ∈ {10−4, . . . , 104}
to select hyperparameters based on the normalized discounted cumulative gain (NDCG) (Järvelin and
Kekäläinen, 2002) of the validation set.

We set the dimension of the latent space K to 30 and use the same random initialization of θu and βi
in all settings. For the coordinate updates algorithm in Section 6.3, we declare convergence when the
mean squared error on the validation set increases.

4Even though Schnabel et al. (2016) derive the model from empirical risk minimization framework, the model objective
closely resembles the joint log-likelihood of the causally trained model (CAU) with conditional prediction (Cond).



76 6.4 Empirical study

6.4.3 Metrics

We separately evaluate the exposure model, how well we predict which items a user will see, and
the click model, which items a user will like. Note that causal inference of the click model uses the
exposure model to compute the propensity score. Further, marginal prediction of clicks also uses the
exposure model.

We evaluate the exposure model usingmodel fitness to the data (predictive log-likelihood). We evaluate
the click model with recommendation metrics, both a likelihood-based metric (a tail probability) and
a ranking-based metric (mean average rank (Charlin et al., 2015)).5 We describe the recommendation
metrics in turn.

Predictive log tail probability (PLP). For yui in the heldout test set, we compute the predictive log-
probability based on its value and whether we predict conditionally or marginally (see Eq. 6.4).

Conditional prediction uses E[yui | aui = 1,D]. If yui = 1, we compute right-tail conditional
predictive log-probability for positively preferred items,

log P(ypredui > 1 | aui = 1,D).

Otherwise we compute left-tail conditional predictive log-probability

log P(ypredui ≤ 0 | aui = 1,D).

Both correspond to Gaussian tail probability for matrix factorization.

Marginal prediction uses E[yui | D]. If yui = 1, we compute right-tail marginal predictive log-
probability,

log P(ypredui > 1 | D) = log πui + log P(ypred > 1|aui = 1,D)

(Recall that πui is the probability that user u is exposed to item i.) Otherwise we compute left-tail
marginal predictive log-probability

log P(ypredui ≤ 0 | D) = log
(
πuiP(ypredui ≤ 0 | aui = 1,D) + (1− πui)

)
.

The intuition behind PLP is that we would like to have 0’s and 1’s in the heldout set well-separated.
This is different from the commonly used metrics for rating prediction, e.g., mean squared error or
mean absolute error, both of which penalize the model unless it predicts with a perfect 0 and 1. We
report average PLP over all the heldout yui in the test set.

Mean Average Rank. We compute MAR as follows. For user u we calculate the ranking of all
the items i ∈ {1, 2, . . . , I} by sorting the predictions and excluding the items from the training and
validation sets. Define rank(u, i) as the predicted rank of item i for user u: rank(u, i) = 0 if item i is
ranked first for user u and rank(u, i) = I − 1 if ranked last. For items within a set Iu,

MARu =
1
|Iu| ∑

i∈Iu

rank(u, i).

5NDCG (Järvelin and Kekäläinen, 2002) is another commonly used ranking-based metric. It emphasizes the importance of
the top ranks by logarithmically discounting ranks. MAR, on the other hand, makes no such discounting.
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ML-1M ML-10M Yahoo-R3 ArXiv
REG SKEW REG SKEW REG SKEW REG SKEW

Pop -1.39 -2.07 -1.64 -2.76 -1.81 -2.74 -3.83 -3.95
PF -0.97 -1.51 -1.08 -2.06 -1.58 -2.35 -2.71 -2.80

Table 6.2: Heldout predictive log-likelihood for Poisson factorization (PF) exposure
model and popularity exposure model (Pop). PF outperforms Pop across datasets.
The predictive log-likelihood is generally lower on SKEW than REG.

In our studies, Iu is the item set in the heldout set with yui = 1, i.e., the items that user u rated
positively or the papers that user u downloaded after looking at the abstract. Since the value of MAR
depends on the size of the item set I, we report the normalized MAR percentile instead as MARu/I.
This also corresponds to the expected percentile ranking proposed in Hu et al. (2008) with binary
feedback data. The interpretation of MAR is on average at what percentile a heldout item will be
ranked (smaller is better). The reported MAR averages over all users.

6.4.4 Results

We report our studies on all data. We evaluate both the exposure model alone and the recommender
model, which uses the exposure model to improve its recommendations.

Evaluating the exposure model. We first compare two different exposure models used in this
chapter: Poisson factorization (PF) and the popularity model (Pop). We use the training set created
in Section 6.4.1 to train the model (for PF, we use the validation set to monitor convergence). We
randomly sample the same number of entries with aui = 0 as those with aui = 1 and report the
average heldout predictive log-likelihood in Table 6.2.

PF always outperforms Pop. Further, the predictive log-likelihood is always lower on skewed test
sets than on regular test sets. This is expected because skewed test sets follow a different exposure
distribution from the training and validation sets. This makes it harder for the exposure model to
correctly predict its values.

Evaluating the recommender model. We summarize the log probability (PLP) and mean average
rank (MAR) (described in Section 6.4.3) in Table 6.3a and Table 6.3b, respectively. The table reports
eight different model configurations based on which exposure model is used, how the model is fit,
and how predictions are formed.6

From Table 6.3, we make the following observations.

1. Poisson factorization (PF) gives better performance in terms of both PLP and MAR than the
popularity exposure model (Pop). (Pop configurations are on the top half of each table; PF
configurations are on the bottom half.)

2. If the test set exposure comes from the same distribution as the training set (regular split), training
the model observationally or causally does not make a difference in terms of PLP. As for MAR,
we can make the same observation (with marginal prediction), but ArXiv is an exception.
6There are seven distinct configurations, as the ones that are trained observationally (OBS) with conditional prediction

(Cond) will not depend on the exposure model. We keep all eight configurations in Table 6.3 for easy comparison.
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ML-1M ML-10M Yahoo-R3 ArXiv
REG SKEW REG SKEW REG SKEW REG SKEW

Pop
Cond OBS -1.50 -2.07 -1.62 -2.59 -1.58 -1.75 -1.61 -1.65

CAU -1.61 -1.95 -1.67 -1.89 -1.51 -1.56 -1.74 -1.76

Mar OBS -3.17 -4.29 -3.56 -5.63 -2.98 -3.53 -3.93 -4.21
CAU -3.21 -4.25 -3.60 -5.24 -2.84 -3.53 -3.94 -4.15

PF
Cond OBS -1.50 -2.07 -1.62 -2.59 -1.58 -1.75 -1.61 -1.65

CAU -1.48 -1.84 -1.51 -1.96 -1.49 -1.55 -1.60 -1.62

Mar OBS -2.62 -3.87 -2.69 -4.61 -2.71 -3.40 -3.05 -3.32
CAU -2.60 -3.57 -2.69 -4.42 -2.59 -3.14 -3.04 -3.33

(a) Predictive log tail probability (bigger is better)

ML-1M ML-10M Yahoo-R3 ArXiv
REG SKEW REG SKEW REG SKEW REG SKEW

Pop
Cond OBS 13.0% 25.6% 5.4% 18.3% 15.1% 36.1% 18.4% 23.6%

CAU 17.3% 27.1% 8.0% 18.4% 21.5% 31.7% 32.1% 35.7%

Mar OBS 11.8% 26.6% 5.1% 18.9% 15.6% 36.9% 22.5% 33.8%
CAU 12.3% 26.9% 5.3% 18.7% 15.8% 36.6% 30.0% 42.9%

PF
Cond OBS 13.0% 25.6% 5.4% 18.3% 15.1% 36.1% 18.4% 23.6%

CAU 16.9% 26.6% 7.8% 17.1% 16.6% 29.2% 30.7% 33.9%

Mar OBS 6.9% 19.1% 2.9% 14.2% 10.2% 28.9% 7.5% 13.0%
CAU 6.9% 18.4% 3.1% 14.2% 9.9% 25.9% 11.2% 13.1%

(b) Mean average rank (smaller is better)

Table 6.3: Predictive log tail probability (PLP) and mean average rank (MAR) for
the recommendation model on different datasets. The results are organized by the
exposure model (Pop or PF), how to fit the model (OBS or CAU), and how to make
prediction (Cond or Mar). The OBS-Cond models correspond to the classical matrix
factorization (Salakhutdinov and Mnih, 2008). The CAU-Cond models correspond
to Schnabel et al. (2016). See main text for detailed analysis.
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On the other hand, if the test set exposure distribution is different (the skewed split), training
the model causally gives more robust generalization performance. Even on ArXiv, we can see
that moving from regular to skewed severely degrades the performance of observationally-trained
models, as opposed to causally-trained models, where the degradation is comparably weaker.

Furthermore, we computed the mean average rank of heldout rare items, those only rated by few
users. We found the percentile of held-out rare items are much smaller with causally trained
models. This indicates that fitting the model causally corrects for the popularity bias induced by
the exposure process. (These numbers not reported.)

3. Marginal prediction gives the best overall performance in terms of both metrics. When we predict
whether a user will like an item, we should consider her preference as well as how likely she is to
seek out the item.

4. In Schnabel et al. (2016), the authors use a naive Bayes propensity score estimator. Our results
show that a more flexible propensity model (e.g., Poisson factorization) tends to give better
recommendation performance.

5. We notice that the results with causally-trained models (CAU) on ArXiv are less stable than those
from the other three datasets. ArXiv is more than one order of magnitude sparser than the other
datasets and less popularity-biased—even considering abstract views, most of the papers are only
viewed and downloaded by a small number of users. Therefore, the estimated propensity score
could contain extreme values, a common problem for methods involving propensity score (Morgan
and Winship, 2014). As part of the future work, we will investigate different propensity score
smoothing techniques.

6.5 Summary

In this chapter, we develop a causal inference approach to recommendation with explicit data. We
separately model two sources of information: the exposure data (which items each user decided to
look at) and click data (which of those items each user liked). Exposure data introduces bias when
we estimate parameters of a recommendation model from the click data, as rare items do not get as
much exposure as popular ones. We use inverse propensity weighting to correct for this bias. Through
extensive empirical study, we demonstrate that this causal approach to recommender systems leads to
improved generalization to new data.

As future work, we can develop similar methodology for implicit data. The main difficulty in implicit
data is that we do not know which items a user has been exposed to. The ExpoMF model and its
variations we developed in Chapter 5 could help with that.
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Chapter 7

Conclusion

In this dissertation, we apply the tools of probabilistic latent variable models and try to understand
complex real-world data about music semantics and user behavior.

Scalable music tagging with Poisson factorization. We develop scalable solution to automatic
music tagging – inferring the semantic tags (e.g., “jazz”, “piano”, “happy”, etc.) from the audio
features. We treat music tagging as a matrix completion problem and apply the Poisson matrix
factorization model jointly on the vector-quantized audio features and a “bag-of-tags” representation.
This approach exploits the shared latent structure between semantic tags and acoustic codewords. The
experimental results on the Million Song Dataset for both annotation and retrieval tasks demonstrate
the steady improvement in performance as more data is used. Furthermore, we can look at the highly
probable tags for each learned latent factor to understand what portion of the acoustic codeword space
is being captured, and whether it is musically coherent.

Content-aware collaborative music recommendation. We address the fundamental cold-start
problem of collaborative filtering: it cannot recommend new songs that no one has listened to. We
train a multi-layered neural network on semantic tagging information as a content model and use it as
a prior in a collaborative filtering model. The model is able to balance between the user feedback and
the content features, allowing the data to “speak for itself”. The proposed system is evaluated on the
Million Song Dataset and shows comparably better result than the collaborative filtering approaches,
in addition to the favorable performance in the cold-start case.

Modeling user exposure in recommendation. We develop a probabilistic matrix factorization
model ExpoMF to capture the latent user exposure (whether or not a user is exposed to an item) in
implicit feedback data. In doing so, we recover one of the most successful state-of-the-art approaches
wmf as a special case of our model (Hu et al., 2008), and provide a plug-in method for conditioning
exposure on various forms of exposure covariates (e.g., topics in text, venue locations). We show that
our scalable inference algorithm outperforms existing benchmarks in four different domains both with
and without exposure covariates. We further demonstrate the versatility of ExpoMF by incorporating
other sources of exposure: 1) the authors of a paper; and 2) the friends in a social network.

Causal inference for recommendation. In the language of causal analysis (Imbens and Rubin,
2015), user exposure has close connection to the assignment mechanism. We leverage this connection
for explicit data and develop a causal inference approach to recommender systems. Observational
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recommendation data contains two sources of information: exposure data (which items each user
decided to look at) and click data (which of those items each user liked). Exposure data introduces
bias when we estimate parameters of a recommendation model from the click data, as rare items do
not get as much exposure as popular ones. We use inverse propensity weighting to correct for this
bias. Through extensive empirical study, we demonstrate that this causal approach to recommender
systems leads to improved generalization to new data.

7.1 Future directions

We present immediate next steps at the end of each chapter that can extend the work. In this section,
we present some long-term directions that can be explored.

Generic inference algorithm for probabilistic latent variables models. Exact posterior inference
is generally intractable for latent variables models. We develop specific inference procedures to
tractably analyze the large-scale data throughout this dissertation. However, this whole process of
deriving problem-specific inference algorithm can be tedious and it requires a lot of modification
once the model is revised. Black-box variational inference (Ranganath et al., 2014; Kucukelbir et al.,
2015) and stochastic gradient variational Bayes (Kingma and Welling, 2013; Rezende et al., 2014)
are two promising avenues for generic inference algorithm that is applicable to a wide variety of
models. These black-box approaches will also enable us to build models with more complex structures
beyond the simple bi-linear factors in this dissertation without worrying (too much) about fitting the
model.

With generic inference algorithm, we would like to automate the Box’s loop of model development
(Box, 1976; Blei, 2014): build the model, fit the model, criticize (evaluate) the model, and revise
the model (if necessary). Edward (Tran et al., 2016) is a software framework that is currently under
active development with this goal in mind.

Stochastic optimization for sparse user feedback data. The models presented in this dissertation
are mostly bi-linear factor models, which have limited modeling capacity. To leverage the advances
of more powerful models (e.g., deep neural networks), the convenient closed-form coordinate updates
are generally unavailable and it is normal to resort to stochastic optimization for model inference.
User feedback data, whether explicit or implicit, is often very sparse (for implicit data, it is common
to have > 99.9% of 0’s). This presents additional challenge for stochastic optimization, as naively
subsampling random user-item interaction will very likely over-emphasize the 0’s in the data.1 This
problem is also closely related to generic inference algorithm mentioned above, as most of these
black-box approaches heavily reply on stochastic optimization.

Gopalan and Blei (2013) address the similar sparsity issue with network data by subsampling 0’s
in a biased way, down-weighting their influence, then correcting the introduced bias to make sure
the noisy stochastic objective matches the true objective in expectation. Rendle and Freudenthaler
(2014) propose to subsample 0’s more intelligently by choosing the 0’s with bigger gradient (i.e., the
negative examples which the model is more uncertain about) so that the learning procedure can make
progress more rapidly. Similar idea has also been explored in fast inference for network data (Raftery
et al., 2012).

1Training the model with stochastic gradient descent by uniformly subsampling user-item interactions will usually lead to a
weaker baseline.
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The recent success of work embedding models (e.g., skip-gram word2vec (Mikolov et al., 2013))
demonstrates the effectiveness of negative sampling. One can view negative sampling as a way to
battle the overwhelming negative examples in sparse data. It also has intimate connection with the
exposure and propensity weights presented in Chapter 5 and Chapter 6, respectively: both of them are
down-weighting the gradients of the negative examples in a principled way. Exploring the deeper
connection among these work and developing general-purpose stochastic subsampling schemes for
sparse user feedback data would be a valuable future direction.

Bridging Bayesian inference and causal inference for recommender systems. Our attempt at
developing a causal inference approach to recommendation with Bayesian inference in Chapter 6 is
only a small step of bringing these two fields together. There are still some fundamental problems
that need to be theoretically justified, e.g., how to use inverse propensity weighting with Bayesian
inference. Our explanation of “seeing each data point multiple times” suffices for doing a point
estimate. But more rigorous formulation is required if we want a fully Bayesian treatment. Rubin
(1978) formulate the problem of estimating the causal effect as a Bayesian inference problem—given
observed data, specify a joint model over all the random variables (observed and latent), compute the
predictive density for different potential outcomes—and present conditions under which the inference
is “valid” with only observed data. It would be worthwhile to follow the similar procedure but we
should also be cautious about validating the necessary assumptions.
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