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1 Introduction

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of a statistical
model. It is widely used in Machine Learning algorithm, as it is intuitive and easy to form given
the data. The basic idea underlying MLE is to represent the likelihood over the data w.r.t the model
parameters, then find the values of the parameters so that the likelihood is maximized.

For example, given N 1-dimensional data points xi, where i = 1, 2, · · · , N and we assume the
data points are drawn i.i.d. from a Gaussian distribution. Then we could estimate the mean µ and
variance σ2 of the true distribution via MLE. Per definition, µ = E[x] and σ2 = E[(x− µ)2]. Thus,
intuitively, the mean estimator x = 1

N

∑N
i=1 xi and the variance estimator s2 = 1

N

∑N
i=1(xi − x)2

follow. It is easy to check that these estimators are derived from MLE setting. See Chapter 2.3.4 of
Bishop (2006).

2 Biased/Unbiased Estimation

In statistics, we evaluate the “goodness” of the estimation by checking if the estimation is “unbi-
ased”. By saying “unbiased”, it means the expectation of the estimator equals to the true value, e.g.
if E[x] = µ then the mean estimator is unbiased. Now we will show that the equation actually holds
for mean estimator.

E[x] = E[
1

N

N∑
i=1

xi] =
1

N

N∑
i=1

E[x]

=
1

N
·N · E[x]

= E[x] = µ

The first line makes use of the assumption that the samples are drawn i.i.d from the true dis-
tribution, thus E[xi] is actually E[x]. From the proof above, it is shown that the mean estimator is
unbiased.

Now we move to the variance estimator. At the first glance, the variance estimator s2 =
1
N

∑N
i=1(xi − x)2 should follow because mean estimator x is unbiased. However, it is not the
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case:

E[s2] = E[
1

N

N∑
i=1

(xi − x)2]

=
1

N
E[

N∑
i=1

x2i − 2

N∑
i=1

xix+

N∑
i=1

x2]

We know
∑N

i=1 xi = N · x and
∑N

i=1 x
2 = N · x2. Plug these into the derivation:

E[s2] =
1

N
E[

N∑
i=1

x2i − 2N · x2 +N · x2]

=
1

N
E[

N∑
i=1

x2i −N · x2]

=
1

N
E[

N∑
i=1

x2i ]− E[x2]

= E[x2]− E[x2]

According to the alternative definition of variance, σ2x = E[x2]−E[x]2 and similarly, σ2x = E[x2]−
E[x]2, where the random variable is x. Note that E[x] = E[x] = µ. Plug the 2 equations to the
derivation:

E[s2] = (σ2x + µ2)− (σ2x + µ2)

= σ2x − σ2x

σ2x = VAR[x] = VAR[
1

N

N∑
i=1

xi] =
1

N2
VAR[

N∑
i=1

xi]

Since the samples are drawn i.i.d.

VAR[
N∑
i=1

xi] =

N∑
i=1

VAR[x] = N ·VAR[x]

Thus,

σ2x =
1

N
VAR[x] =

1

N
σ2x

Plug back to the E[s2] derivation,

E[s2] =
N − 1

N
σ2x

Therefore, E[s2] 6= σ2x and it is shown that we tend to underestimate the variance. In order to over-
come this biased problem, the maximum likelihood estimator for variance can be slightly modified
to take this into account:

s2 =
1

N − 1

N∑
i=1

(xi − x)2

It is easy to show that this modified variance estimator is unbiased.
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