
DOI: 10.1609/aaai.12013

RECOMMENDER SYSTEMS

Deep learning for recommender systems: A Netflix case
study

Harald Steck Linas Baltrunas Ehtsham Elahi Dawen Liang
Yves Raimond Justin Basilico

Correspondence
Harald Steck,Netflix.
Email: hsteck@netflix.com

Abstract
Deep learning has profoundly impacted many areas of machine learning. How-
ever, it took a while for its impact to be felt in the field of recommender systems.
In this article,we outline someof the challenges encountered and lessons learned
in using deep learning for recommender systems at Netflix. We first provide an
overview of the various recommendation tasks on the Netflix service. We found
that different model architectures excel at different tasks. Even though many
deep-learning models can be understood as extensions of existing (simple) rec-
ommendation algorithms, we initially did not observe significant improvements
in performance over well-tuned non-deep-learning approaches. Only when we
added numerous features of heterogeneous types to the input data, deep-learning
models did start to shine in our setting. We also observed that deep-learning
methods can exacerbate the problem of offline–online metric (mis-)alignment.
After addressing these challenges, deep learning has ultimately resulted in large
improvements to our recommendations as measured by both offline and online
metrics. On the practical side, integrating deep-learning toolboxes in our sys-
tem has made it faster and easier to implement and experiment with both deep-
learning and non-deep-learning approaches for various recommendation tasks.
We conclude this article by summarizing our take-aways that may generalize to
other applications beyond Netflix.

INTRODUCTION

In the early 2010s, deep learning was taking off in the
machine-learning community fueled by impressive results
on a variety of tasks in different domains including com-
puter vision, speech recognition, andnatural language pro-
cessing (NLP). At that time therewas a stir in the air within
the recommender-systems research community: Will the
wave of deep learning also wash over recommenders to
deliver tremendous improvements? As with many others,

we atNetflixwere intrigued by this question and the poten-
tial of deep learning to improve our recommendations.
While the answer is now quite clear that deep learning
is useful for recommender systems, the path to under-
stand where deep learning is beneficial over existing rec-
ommendation approaches was an arduous one. This is
evidenced by how many years it took for such methods
to get traction in the research community. But it was a
rewarding path as evidenced by a subsequent bloom of
work on the subject. Our own investigations into deep
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learning at Netflix took a similar path: initial exuberance
faced the stark reality of well-tuned baselines. This led
to a clearer understanding of the relationship between
deep learning and other recommender models. The obsta-
cles gave way when we combined the lessons from these
approacheswith insights aboutwhat kinds of problems dif-
ferent deep-learning approaches excel as well as their lim-
itations. Along the way, it also yielded practical lessons on
how to get deep learning to work in real-world recommen-
dation settings.
In this article, we first set the scene for our journey with

an overview of various personalization tasks on the Netflix
service and a focus on the key task of personalized ranking
of movies and TV shows on the Netflix service. We then
discuss several specific properties of the data available in
recommendation settings like at Netflix, and the practical
challenges they impose for creating recommendation algo-
rithms.
Looking at deep learning through a recommendation

lens allowed us to investigate a variety of models for dif-
ferent recommendation tasks at Netflix. From this, we will
share insights into a couple of important types of mod-
els. First, we discuss bag-of-items models that make use
of the set of videos watched by a member. While pow-
erful, these models ignore temporal information, so we
subsequently discuss sequential models that address this
deficit. We found both approaches to be valuable for differ-
ent tasks.
After initial struggles with deep-learning approaches,

our experiments indicated that deep-learning algorithms
especially started to shine in recommendation problems
when we provided them with additional heterogeneous
features and information sources. In contrast, other mod-
els remained competitive in the classic recommendation
setting where only user-item interaction-data are used (as
is often the case in the literature, see also Ferrari Dacrema,
Cremonesi, and Jannach (2019)), and when these meth-
ods were properly tuned. However, this flexibility of deep-
learning models allowed us to find scenarios where we
could build models that obtained large improvements in
offline metrics evaluated on historical data.
After finding improvements in offline metrics, we sub-

sequently found that these gains, even when very large,
did not always translate to online performance in an A/B
test with real members. To address this, we needed new
offline metrics that were better proxies of the online met-
rics. Apart from that, we cover additional practical aspects
required to use deep learning in a recommendation system
supporting hundreds of millions of members. The avail-
able deep-learning toolboxes provide a flexible framework
that makes it very easy to develop andmodify model archi-
tectures for recommender systems in practice.

Finally, while we focus on key learnings fromusing deep
learning for recommendation systems at Netflix, we will
also outline take-aways that may generalize to other appli-
cations as well.

RECOMMENDATIONS AT NETFLIX

The main task of our recommender system at Netflix is to
help our members discover content that they will watch
and enjoy to maximize their long-term satisfaction. This
is a challenging problem for many reasons, including that
every person is unique, has amultitude of interests that can
vary in different contexts, and need a recommender sys-
temmost when they are not sure what they want to watch.
Doing this well means that each member gets a unique
experience that allows them to get the most out of Net-
flix. As a monthly subscription service, member satisfac-
tion is tightly coupled to a person’s likelihood to retainwith
our service,which directly impacts our revenue. Therefore,
the value of a recommender system can be measured by
the increase in member retention. Over years of the devel-
opment of personalization and recommendation technolo-
gies, we have been able to repeatedly create meaningful
improvements in retention (Gomez-Uribe and Hunt 2015).
The specific recommendation task as well as the avail-

able data play a crucial role when it comes to the question
of which algorithm works the best, as we found in numer-
ous controlled online experiments. At a video-streaming
service, the primary decision of the recommender system
is to choose which videos to show to eachmember on their
Netflix homepage after they log into their profile on any
device. This personalization task is itself divided into dif-
ferent sub-tasks using recommender systems designed to
cover different member needs, each of which can be pow-
ered by a different algorithm.
At Netflix there is no single model that drives all

recommendations but rather a set of techniques that are
all aligned on their goal to increase member satisfaction.
Through experimentation with various kinds of recom-
mendation algorithms, we found that there is no “silver
bullet” the best-performing method (whether deep learn-
ing or other) depends on the specific recommendation
task to be solved as well as on the available data. For
this reason, different kinds of machine learning models
are used to generate personalized recommendations for
the different parts (e.g., rows) of the Netflix homepage.
Various aspects of the Netflix recommender system, prior
to using deep learning, are outlined in Gomez-Uribe
and Hunt (2015). Dividing the recommendation problem
in multiple sub-tasks allows us to combine a diversity
of different approaches and also makes the research
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F IGURE 1 Netflix homepage where we highlighted various recommendation tasks

and development of new or improved recommendation
algorithms more modular and scalable.
Figure 1 displays a Netflix homepage with red cir-

cles enumerating different recommendation tasks, each of
which is powered by a different algorithm. For example,
there is a dedicated algorithm (1) for choosing the first
video to display prominently at the top of the homepage,
another one for ranking already-watched videos that the
user may want to continue watching (7), as well as oth-
ers intended to help our members discover new videos (5).
The output of each of these algorithms can be surfaced as
different rows of recommended videos on the homepage.
There are several more personalization tasks on the Net-
flix service that are beyond the scope of this article. For
instance, there is an algorithm (4, 6) that selects which
rows to present in a personalized way to create the struc-
ture of the homepage (Alvino and Basilico 2015). Apart
from that, messages and notifications (3) sent to our mem-
bers are personalized aswell.We also use recommendation
techniques as part of our search (2) engine (Lamkhede and
Das 2019). In this article, we focus primarily on the task

of recommending videos from the Netflix catalog to each
member, as it is the most common across our recommen-
dation settings. However, many of the insights we share
extend to these other tasks as well.
Besides the recommendation task, the available data and

its properties have a crucial impact on which recommen-
dation algorithm works well. The first and most impor-
tant distinction is whether the data contain only the user-
item interactions (as is often the case in publicly available
data sets used in the literature), or additional information
like user attributes, item attributes or contextual informa-
tion regarding the user-item interaction. Through experi-
mentation we found that more complex models, including
deep-learning algorithms, shine when we enriched data
with such additional heterogeneous features.
Even though several common properties of the data

have been discussed in the literature of recommender
systems, it is worth reviewing them briefly before we
outline additional challenges in the data for building
real-world recommender-systems. The key differences to
the data-sets used in other domains are as follows: first
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and foremost, the observed/collected data are missing not
at random (Hernández-Lobato, Houlsby, and Ghahramani
2014; Liang et al. 2016; Marlin, Zemel, and Roweis 2005;
Marlin et al. 2007; Marlin and Zemel 2009; Steck 2010),
that is, the entries with observed positives (e.g., played
videos, clicked items, given ratings or thumbs, etc.) are not
randomly distributed in the user-item interaction-matrix.
This is a crucial difference to fields like compressive
sensing or matrix completion, where the entries in the
matrix are typically assumed to be missing at random.
Second, the unobserved entries in a user-item interaction
matrix may either be (true) negatives (i.e., the user is
truly not interested in this item), or positives that were
not observed (yet). Third, the observed data are typically
extremely sparse, and the observed positives are very noisy
as they originate from a stochastic process. Fourth, there
is a large popularity-skew present in the data, that is, the
popularities of the various items follow approximately
a power-law distribution, resulting in many orders of
magnitude in differences in the popularities of the various
items. Regarding the users, there is a similar (approxi-
mate) power-law distribution, with a small number of very
active users and a large number of less active users. This
power-law distribution can cause modeling challenges
due to distribution mismatch. It also poses a challenge
in making fair and accurate recommendations regarding
unpopular items or for users with low activity.
In a real-world recommender system, the various

biases in the user-item interaction-data, like presentation
or position biases, can possibly be amplified due to a
feedback loop, where the recommender system is trained
on the observed user-actions from a previous time-step,
which may be biased due to the recommendations
shown to the users at that time (Chaney, Stewart, and
Engelhardt 2018). This is due to presentation bias, where
users are more likely to interact with items shown more
prominently by the system. Breaking (or at least damp-
ening) the feedback loop is a key challenge in real-world
recommender-systems. This poses not only a challenge for
training recommender systems on the data that have been
collected, but also results in a notable mismatch between
offline and online metrics, as outlined later in this article.

MODELING APPROACHES

In this section, we outline our learnings when experiment-
ing with various deep-learning models for recommenda-
tions, from simple baselines to more complex approaches.
We divide these models into two groups in the follow-
ing: bag-of-items approaches and sequential models.
Properties that are common to both types of models are
discussed as well. Following that, we describe our key

insight, namely that deep-learning algorithms for rec-
ommendations excel at combining many heterogeneous
features. In contrast, we found that simpler models that
are well-tuned were competitive when only the user-item
interactionswere used (as is often the case in the literature,
see also Ferrari Dacrema, Cremonesi, and Jannach (2019)).

Bag-of-items approaches

Analogous to bag-of-words approaches in NLP, many rec-
ommender systems make the bag-of-items assumption,
which is a bag-of-videos in our case. In this approach, the
model ignores the temporal order in which a user played
videos and instead treats them as a set. The most common
way to represent the training data in a bag-of-items setting
is to turn the data into a sparse user-by-item matrix where
each non-empty entry represents the user’s feedback on an
item, either implicit (like plays or clicks) or explicit (like
ratings such as thumbs up or down). Compared to words,
the amount of sequential information in video engage-
ments is lower, with some exceptions like movie sequels
or episodes of TV shows. Though there are also some tem-
poral dynamics due to viewing trends, the bag-of-videos
assumption can provide a useful approximation to the real
world when we model a user’s long-term interests, which
tend to be relatively stable. Because of this and the spar-
sity of feedback, we have found it important to understand
these long-term interests in our recommendations.
In the literature on recommender systems, especially

during the Netflix Prize Competition (Bennet and Lan-
ning 2007), several bag-of-items approaches were devel-
oped, including Restricted Boltzmann Machines (RBMs)
(Salakhutdinov, Mnih, and Hinton 2007) as well as several
variants of matrix-factorization models such as SVD++
(Koren 2008) or asymmetric matrix factorization (Paterek
2007; Jahrer, Toscher, and Legenstein 2010). Interestingly,
both techniques have connections with deep learning:
around the same time as the Netflix Prize, RBMs were
also used to pre-train deep-learning models for computer-
vision tasks in their early days (Hinton, Osindero, and
Teh 2006; Hinton and Salakhutdinov 2006). However, the
instability in training RBMsmade it difficult to adapt them
to other recommendation tasks beyond rating prediction.
However, a generalized form in autoencoders did show
more promise. The connection between matrix factoriza-
tion and deep learning appears less obvious. But as we
will illustrate, they can actually be linked through autoen-
coders.
Autoencoders have been used in various application

areas, including machine translation (e.g., Tu et al. 2017)
and computer vision (e.g., Rifai et al. 2011), as well as rec-
ommender systems (e.g., Liang et al. 2018; Steck 2019; Wu
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et al. 2016). An autoencoder is comprised of two parts: an
encoder and a decoder, both of which may consist of sev-
eral hidden layers with nonlinear activation functions. The
encoder converts the input-vector into a low-dimensional
embedding, while the decoder converts the embedding
back to the output-vector. The goal of autoencoders is to
produce an output-vector that is close to the input-vector
by minimizing the reconstruction error. In the recommen-
dation task, the input (and output) vector is typically a
multi-hot encoding of a user’s play-history, that is, each
element of the vector refers to a video, and its value is 1
if the user has played the video, and 0 otherwise. Besides
binary vectors, continuous-valued ones may also be used,
for example, to capture the time-duration a user watched
a video.
The autoencoder subsumes several “traditional” recom-

mendation approaches as special cases. First, asymmetric
matrix factorization (MF) (Jahrer, Toscher, and Legenstein
2010; Paterek 2007) can be viewed as a linear autoencoder
with a single hidden layer. Note that asymmetric matrix
factorization is different from (standard) matrix factoriza-
tion in the following way (in fact, SVD++ (Koren 2008)
combines both asymmetric MF and standard MF): when
the training-data are given in the form of a user-video
interaction-matrix, matrix factorization learns a matrix of
user-embeddings as well as a matrix of video-embeddings.
In contrast, asymmetric matrix factorization learns two
(different) matrices of video-embeddings (corresponding
to the encoder and decoder of the autoencoder) and con-
strains the user-embeddings to be the average of the video-
embeddings (in the encoder) regarding the videos played
by the user. In standard matrix-factorization, making rec-
ommendations for a new user or updating for a user with
new data would involve an optimization procedure (a pro-
cess which is typically referred to as “fold-in”) to obtain
the corresponding user-embedding. This typically involves
running one step of an optimization algorithm to solve for
the user-specific parameters (i.e., user-embedding) while
keeping the item-embeddings fixed. On the other hand,
this “fold-in” procedure is not needed when using asym-
metric matrix factorization (or more generally, nonlin-
ear autoencoder models), where recommendations can be
computed by passing the input-vector through the encoder
and decoder. This “amortized inference” proves widely
applicable across many domains (Gershman and Good-
man 2014; Kingma and Welling 2013; Rezende, S, and D
2014).
Second, neighborhood-based approaches may also be

understood as a special case of autoencoders, given that
both approaches are based on an item-to-item function.
If we increase the dimension of the hidden layer in a
linear autoencoder to be identical to the number of items
in the input (and output) vector, we obtain a full-rank

Matrix Factorization

Asymmetric Matrix-Factorization

EASE / SLIMAutoencoder

Feedforward Network

full-rank

unconstrained user-embeddings

linear activation

different output

Neighborhood-based
Approaches

Recurrent Neural Network Transformer

sequential

optimized

F IGURE 2 (Simplified) relationships among several models
discussed in this article

model (instead of a low-rank model as typically used
for autoencoders) that is equivalent to a full-rank model
having a single item-item matrix of model-parameters.
This matrix corresponds to the item-item similarity matrix
used in neighborhood-based approaches (see, e.g., Aiolli
2013; Verstrepen and Goethals 2014; Volkovs and Yu
2015). While this item-item matrix is often constructed
using various heuristics (like cosine-similarity or various
re-scaled/normalized versions of empirical item-item
co-occurrence matrices), the view of neighborhood-based
approaches as autoencoders provides a principled way
of learning/optimizing such an item-item matrix, for
example, see the EASE model (Steck 2019). Also the SLIM
model (Ning and Karypis 2011) can be viewed from this
perspective by including additional constraints on the
learned parameters in the item-item matrix.
A deep feedforward model may be viewed as a gener-

alization of the autoencoder: now the input vector does
not need to be the same as the output vector of the net-
work. For instance, given amulti-hot encoding of the user’s
play-history in the input vector (as a bag of videos), a rea-
sonable target of the feedforward model is to predict the
most recent video that the user played (instead of pre-
dicting all the videos in the user’s play-history, like in an
autoencoder). While such a restriction of the target-vector
may reduce the amount of available training-data, the ben-
efit is that the model can learn the current interests of
the users (beyond just their long-term interests), which
also allows the model to account for some popularity
trends.
Through the lens of autoencoders, we can see that sev-

eral seemingly unrelated models commonly used in rec-
ommender systems are in fact closely connected. This
can help us better design recommender systems for spe-
cific needs by flexibly combining different models. It also
provides insights on how to further improve different
models. This includes using different techniques for reg-
ularization, loss functions, activation functions, or opti-
mization procedures. See Figure 2 for a visual reference
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explaining relationships between various models, where
we also included the sequential models discussed in the
next section.

Sequential models

While the bag-of-items view is convenient, there is useful
information in the sequential nature of a user’s play-
history that gets removed in a bag-of-items model. To
accommodate this, many of the deep sequential models
originally developed for NLP tasks can be adapted to the
recommendation task, for example Hidasi et al. (2015).
Instead of predicting the next word in a sentence, the
recommendation model aims to predict the next item
the user will interact with. Sequential methods are very
effective in e-commerce applications for session-based
recommendations: there, the lack of a clear user-identifier
means that the only known information is the sequence of
items visited so far within the user’s session. Several mod-
els were found to show good performance (Hidasi et al.
2015; Quadrana et al. 2017; Zhang et al. 2019) on such tasks.
While we found a bag-of-items approach to be sufficient

for some of the recommendation tasks on the Netflix
homepage, certain tasks clearly benefited from using
sequential models. We have experimented with various
sequential models in recent years, including simple n-
gram models, recurrent neural networks like LSTM (long
short term memory) (Hochreiter and Schmidhuber 1997)
or GRU (Cho et al. 2014), as well as transformer architec-
tures like BERT (Devlin et al. 2018). While transformers
are not (strictly speaking) sequential models, their atten-
tion mechanism has similar effects. Besides improving
recommendation accuracy, the attention mechanism also
provides a new and interesting way of determining an
explanation for each recommended video.

Adding heterogeneous features

So far we have mostly described “traditional”
recommendation-tasks where only user-item interaction-
data are used. An interesting empirical finding in the
literature and also in our production system is that, if
they are well tuned, rather shallow model-architectures
(typically with one to three hidden layers) achieve the best
prediction accuracy in these “traditional” recommenda-
tion tasks. This is a key difference to other deep-learning
application-areas, like image classification, where major
improvements have been achieved by using much deeper
architectures. While the full range of low-level to high-
level features has to be learnt in image classification
problems (e.g., from pixels to objects), in a traditional

recommendation setup, the item-identifier are already
provided in the data: in our case, video-IDs that a user
has watched. This makes the need for learning various
low-level features obsolete. Because this recommendation
setup can be seen as learning the pairwise interaction of
two categorical features (users and items), it becomes a
pure representation-learning task, where the embeddings
for both the user and item are learned. While it is possible
for a deep network to learn from data how to interact
those two embeddings with each other, it is much more
efficient to multiply them directly, instead of requiring
various layers in the network to learn basic operations
like a dot product of vectors, which requires a much
deeper architecture.
After we had struggled to obtain significant improve-

ments in recommendation accuracy by employing deep
learning compared towell-tuned simplermodels on “tradi-
tional” recommendation tasks,we took a step back to think
aboutwhat deep learning could potentially enable us to do,
andwhatwas difficult with traditionalmodels.We hypoth-
esized that deep models could be particularly effective in
making use of extra information beyond a user’s implicit or
explicit feedback. Indeed, when we carefully added addi-
tional heterogeneous information, we obtained large gains
in recommendation accuracy.
In the following, we use the example of leveraging time

as an additional feature to illustrate the power of deep
learning and representation learning. First, note that time
is not easy to represent within linear models as it car-
ries several levels of cyclic and seasonal information. For
instance, the seasonal effects in themovie-domain include
measurable changes in taste-patterns as a function of the
time of the day (e.g., more videos for children in the after-
noon), as well as the day of the week (e.g., TV shows vs.
movies), and holidays (e.g., horror movies leading up to
Halloween).
In the recommender-systems literature, it has been

shown that incorporating time into models increases
model performance (Koren 2009). A common practice in
Matrix Factorization, and alsomore recently in deep learn-
ing is to represent time by discretizing it. The discretization
is usually done across different dimensions such as day
or week (Hansen et al. 2020). While discretizing can help
pick up the cyclical elements of time, the embedding-
oriented approaches have the down-side that, while
time-embeddings for the past can be learned, it is hard to
do so for the future where the model is actually to be used
(unless you have a flux capacitor). To address this, in one
of our sequential models we observed large improvements
when we used raw, continuous timestamps indicating
the time when the user played a video in the past, along
with the current time when making a prediction (see
also (Covington, Adams, and Sargin 2016) for a similar
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F IGURE 3 Ranking-improvements when adding time as context

approach developed at about the same time). Figure 3
shows an improvement by more than 30 percentage points
in offline metrics when using continuous-time features
versus discretized time. This experiment exemplifies deep-
learning’s power for representation learning: first, there
is no need to define an arbitrary discretization-schema,
which can be challenging when dealing with behaviors
from people in the various time-zones around the world,
as well as with different interaction-frequencies. Second,
a simple representation of the data also allows the model
to learn and extrapolate trends.
However, as usual with deep learning, explainabil-

ity of the model becomes more challenging. Moreover,
when using raw timestamps, the production algorithm
will always use the current timestamp, which was never
observed in the training set. It is an open question on how
far ahead in time these methods can extrapolate and how
fast the performance of the production system degrades
without being retrained. For this reason, we ensure that
such models are regularly retrained to prevent the need to
extrapolate very far beyond the training set.
Apart from incorporating additional context or meta-

data features, personalization can benefit from using com-
puter vision and other content understanding techniques
(audio, video, text) to learn latent representations directly
from the item. Such approaches aremotivated by consider-
able improvements when used on still images (Chen et al.
2020a; 2020b; He et al. 2020a; Misra and van der Maaten
2020). Computer vision has also been used to improve rec-
ommendations in other application areas, for example, in
fashion (Hsiao and Grauman 2020), while using the audio
signal of songs can improve music-recommendations (van
den Oord, Dieleman, and Schrauwen 2013).

In simple models, we found it difficult to integrate these
types of complex features. For instance, Matchbox (Stern,
Herbrich, and Graepel 2009) or Factorization Machines
(Rendle 2010) are bi-linear models that may be viewed as
extensions of matrix factorization to allow for additional
features (besides item-IDs and user-IDs). Given the bi-
linear nature of these models, they are naturally unable
to learn higher-order interactions among several of the
heterogeneous input features. Even though higher-order
interactions can be directly provided as input, this requires
substantial feature engineering and careful feature selec-
tion. In contrast, deep nonlinear models are able to learn
the relevant higher-order interactions in an ‘end-to-end’
fashion to produce considerable gains in recommendation-
accuracy.

PRACTICAL CHALLENGES

Using deep learning in industry brings forwardmany chal-
lenges and learnings that makes it different from an aca-
demic setting. Below, we discuss a few of those.

Mismatch in offline and online settings

A common problem when developing recommender sys-
tems is that offline performance (when evaluated on held-
out historical data) is not reflective of online performance
(when evaluated in an A/B-test where the recommenda-
tions are presented to users). We observed this acutely
when trying deep-learning models. In some cases we saw
significant offline gains over other methods. When tested
online, however, these gains would sometimes disappear
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or, in rare cases, result in worse performance. This is gen-
erally a manifestation of correlational performance not
being indicative of causal behavior. But why would this
problem be exacerbated in the case of deep-learning mod-
els? We would like to highlight a few observations in the
following.
Sensitivity to objective functions and proxy metrics: The

problem formulation in recommender systems tends to be
in the form of some (short-term) proxy metrics (e.g., clicks
or plays), whereas the actual quantity we want to optimize
is subjective and hard to measure, like long-term user sat-
isfaction. The connection between these proxymetrics and
the actual metric of interest may be quite complicated and
may even break in certain ranges (or while extrapolating).
Therefore, if a machine-learning model overfits to these
short-term metrics, it may possibly deviate far away from
the actual metric of interest. Even when simpler models
do not show such deviations, more powerful models, such
as deep-learningmodels can break this connection. Simply
speaking, if a deep-learningmodel is given thewrong prob-
lem to solve, it will solve it more accurately than less pow-
erful models would. We hence need ways of training on
short-term behavior (e.g., clicks or plays) to optimize long-
term behaviors. An additional challenge is that short-term
actions can be quite noisy in the sense that subtle changes
in the definition of the (short-term) training-objective can
lead to big changes in the produced recommendations.
Distribution mismatch: This is in general true when-

ever machine learning models are deployed in the real
world, that is, the data which are used to train machine-
learning models are not reflective of the population for
which the model will be used. Covariate shift is a concrete
example of distribution mismatch in which the distribu-
tion of input features is different between the training data
and the real world. Traditional techniques to fix distribu-
tionmismatch like importance sampling have been shown
to be less effective with powerful deep-learning models
(Byrd and Lipton 2019). These problems are well known
in the recommender-system literature and are active areas
of research, for example (Wang et al. 2020).
Fairness and explainability: This is another very impor-

tant aspect, and it is gaining a lot of attention recently
(Caton and Haas 2020). When a deep-learning model (or
any machine-learning model) is deployed, we need to be
careful of how it may treat real-world entities (in the case
of Netflix, members and videos for example), and whether
there are any unintentional biases that cause the model
to treat some entities in an unfair way. It is again related
to the issue of offline–online mismatch as it may not be
possible to easily evaluate a model from a fairness perspec-
tive as wemay not have the appropriate offline evaluation-
data. A simple example is amodel doingwell for themajor-
ity of the data and poorly on a minority. Increasingly,

explainability techniques are being employed to evaluate
the fairness of the model (Tan et al. 2018). Deep-learning
models are complex and hard to explain. We found tech-
niques like LIME (Ribeiro, Singh, and Guestrin 2016),
SHAP (Lundberg and Lee 2017) and Integrated Gradients
(Sundararajan, Taly, and Yan 2017) to be particularly help-
ful in explaining deep-learning models.
Overcoming all of these problems in the Netflix setting

meant iterative tweaking and refinement of both the
metrics and the deep-learning models through a series
of online tests and offline analyses. In the process, we
not only improved our models, but also our metrics.
The latter also enabled us to better evaluate new rec-
ommendation methods in the future. Examples of these
refinements include off-policy evaluation (Bibaut et al.
2019; Su et al. 2020; Vlassis et al. 2019; Vlassis, Gil, and
Chandrashekar 2021), and the use of bandits (Li et al. 2010)
or reinforcement-learning (He et al. 2020b) techniques.
Contextual bandit techniques in particular are able to
break the feedback loop and remove various biases (e.g.,
Wang et al. 2020) in the data by introducing some amount
of randomness into the recommendations. With bandit
algorithms, we can continuously gather cleaner training-
data by keeping track of the propensities for the shown
recommendations. Even though the user-experience may
be occasionally slightly degraded in the short-term due to
this randomization, it helps improve the quality of recom-
mendations in the long-term. We found these approaches
very effective in our online tests where the careful design
of the exploration approach meant the initial impact of
some randomness can be within the noise-floor of the
algorithm.
A complementary approach to exploration is to use the

fact that there are different ways of discovering videos on
the Netflix service. For instance, if a video gets recom-
mended to a member, there is no need for the member to
search for it. In contrast, if a video or category of videos is
not recommended to a member, it may trigger the mem-
ber to search for it. Hence, the feedback loop can be par-
tially broken by training the recommender system not only
on the videos that were discovered from pages of recom-
mendations, but also on the videos found via search (and
analogously for a search algorithm). The advantage of this
approach is that it does not require any randomization
of the displayed videos, and hence does not result in any
short-term degradation of the recommendations shown to
the user. The disadvantage of this approach obviously is
that it is difficult to quantify to what degree the feedback
loop was broken, and the importance of the different data
sources has to be carefully tuned in the training data. Nev-
ertheless, we found this approach to be an effective compo-
nent for (partially) breaking the feedback loop, as it comes
at no cost/degradation of the user-experience. Of course,
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this approach is only applicable in recommendation tasks
where there are several ways for a user to discover items.

Aspects of the industrial setting

There are multiple considerations to balance when devel-
oping and deploying machine learning algorithms at a
scale of serving hundreds of millions of users. A machine-
learning model is analogous to a kernel in an operating
system in the sense that a lot of work is put into devel-
oping the surrounding ecosystem beyond the model itself,
so that the model works well. Therefore, it is important to
consider practical aspects of the system when considering
deep learning.
Deep-learning software and hardware infrastructure:

In the last couple of decades, neural networks have
been winning the hardware and software lottery (Hooker
2020). This means that in recent years we have seen
plenty of advances in hardware and software specifi-
cally suited for training and deploying deep neural net-
works. An industrial-strength machine-learning develop-
ment and deployment ecosystem is important for suc-
cessful continuous innovation.Well-supported ecosystems
save time for the researchers and engineers and provide a
de-facto standard for model interoperability. In fact, from
a practical perspective, one of the great benefits of using
deep-learning approaches for recommendation is being
able to use deep-learning frameworks such as TensorFlow
(Abadi and others 2015), Keras (Chollet and others 2015),
or PyTorch (Paszke and others 2019) for recommendation
problems. In particular, the automatic differentiation and
tensor-oriented computation of such tools work well even
for simpler models likeMatrix Factorization. These frame-
works enable simple scaling of training and inference by
using specialized hardware such as GPU or TPU. It also
becomes easy to train models on large amounts of data
that would not fit in themainmemory of a machine. Built-
in monitoring-infrastructure enables faster debugging. At
Netflix we had a lot ofmachine-learning libraries that were
developed internally. Usually, each custom model had to
implement its ownmonitoring and interfaces to workwith
the larger ecosystem. Such customization has its costs
in support, speed of development, and deployment. The
above mentioned libraries yield unparalleled standardiza-
tion and efficiency, even if used to train a Matrix Factor-
ization model. Such de-facto standardization also enables
faster on-boarding of new team members.
Extendability of deep-learning models to new attributes

and objectives: Another advantage of using neural-
network models in recommender systems is their flexibil-
ity. As discussed earlier, it is easy to extend the model to
include richer sources of data. A lot of custom-work was

done in the past to extend Matrix Factorization to include
time as a feature (Koren 2009), or to add contextual infor-
mation (Karatzoglou et al. 2010). Neural networks make
these extensions as straightforward as adding new fea-
tures to supervised models. It also allows one to imple-
ment many other simple extensions of Matrix Factoriza-
tion such as specialized loss functions (e.g., Shi et al. 2012)
or various training/optimization techniques (e.g., Kingma
and Ba 2015). Moreover, deployment of Matrix Factoriza-
tion methods rewritten as a neural network can be much
simpler.While aMatrix Factorizationmodelwould need to
do fold-in as described earlier, a neural network performs
analogous fold-in as a standard step of inference.
Ease of integration of deep-learning models in the exist-

ing ecosystem: One of the benefits of deep learning soft-
ware is its adaptability with popular software stacks, for
example the Java Virtual Machine. Before tools like Ten-
sorflow, a researcher would either implement their own
deep-learning model in a software stack that may not be
compatible with the production stack. Because of this mis-
match, it took considerable effort to port our early deep-
learning models to run in our production stack, which
made iterating on them cumbersome. Adaptability ofmod-
ern deep-learning software with many popular software
stacks offered a big advantage and the iteration speed
between offline research and online usage accelerated sig-
nificantly.
Scalability of model training and prediction/inference:

Scaling deep-learning model-training not only depends
on a specialized software/hardware stack but also on
the characteristics of the datasets. For example, con-
sider multiclass classification, which is a very impor-
tant task in recommendation systems (Elahi et al. 2019;
Liang et al. 2018). Multiclass classification is usually
done by using a softmax activation in the output-layer
of deep-learning models. In language modeling or other
domains with a large number of items/labels, the soft-
max computation is the main bottleneck in scaling such
systems. This is not the case for recommender systems
at Netflix. The dataset used in Netflix recommender-
systems typically deals with a medium-sized item set
and hundreds of millions of members. Such settings
perfectly fit many deep-learning architectures that use the
softmax output-layer to make final predictions. Moreover,
given the relatively sparse nature of the user-item interac-
tions, parallel stochastic gradient descent (Recht et al. 2011)
works very well for large-scale training of deep-learning
models. These aspects enable us to use complex architec-
tures successfully on Netflix datasets. In fact, even with
complex architectures and efficient data formats, the train-
ing is often IO bound and not CPU/GPUbound, in contrast
to typical problems with a similar dataset size in image
or language learning. At Netflix, we were able to train
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neural-network models (due to the available toolboxes)
on much more data than other machine learning models.
While using increased amounts of data with specialized
hardware can potentially increase training costs, we found
in our online experiments that the observed benefits easily
outweighed the costs.

CONCLUSIONS

Making deep-learning models successful and widely
adopted within the Netflix recommender system provided
valuable learnings in machine-learning research and engi-
neering. In particular, solving existing problems (e.g.,
traditional recommender systems) with a new approach
(deep learning) sometimes only has limited benefits. In
fact, well-tuned traditional methods are very strong base-
lines when only user-item interaction data are used.
Instead, deep learning can effectively solve new prob-
lems that were considered very challenging for traditional
methods, such as finding good representations for the
time domain, or extending the range and modalities of
inputs considered such as images, text, and videos. Apply-
ing these techniques beyond traditional framings of the
recommendation problem opens the door to consider-
able improvements.
On the other hand, the use of powerful deep-learning

models can also amplify weaknesses in recommendation
systems, for example overfitting on short-termproxy objec-
tives that may be misaligned with longer-term objectives,
such as user satisfaction. Finding ways to better encode
these long-term objectives, as well as controlled experi-
ments to measure long-term user satisfaction, are key.
Another positive side-effect of using deep learning is the

superiormachine-learning software stack. It enables faster
model training, implementation, deployment, debugging
and better support of existing infrastructure.
Many deep-learning models originally developed in

other areas of machine learning, like NLP, have been suc-
cessfully adapted to the domain of recommender systems.
While such cross-pollination will likely continue, we also
expect the development of new approaches that are even
more specific to the properties of the available data and to
the various recommendation tasks.
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