
Negative Interactions for Improved Collaborative Filtering:
Don’t go Deeper, go Higher

Harald Steck
Netflix

Los Gatos, California, USA
hsteck@netflix.com

Dawen Liang
Netflix

Los Gatos, California, USA
dliang@netflix.com

ABSTRACT

The recommendation-accuracy of collaborative filtering approaches
is typically improved when taking into account higher-order inter-
actions [5, 6, 9–11, 16, 18, 24, 25, 28, 31, 34, 36, 41, 42, 44]. While
deep nonlinear models are theoretically able to learn higher-order
interactions, their capabilities were, however, found to be quite
limited in practice [5]. Moreover, the use of low-dimensional em-
beddings in deep networks may severely limit their expressiveness
[8]. This motivated us in this paper to explore a simple extension
of linear full-rank models that allow for higher-order interactions
as additional explicit input-features. Interestingly, we observed that
this model-class obtained by far the best ranking accuracies on
the largest data set in our experiments, while it was still compet-
itive with various state-of-the-art deep-learning models on the
smaller data sets. Moreover, our approach can also be interpreted
as a simple yet effective improvement of the (linear) HOSLIM [11]
model: by simply removing the constraint that the learned higher-
order interactions have to be non-negative, we observed that the
accuracy-gains due to higher-order interactions more than doubled
in our experiments. The reason for this large improvement was
that large positive higher-order interactions (as used in HOSLIM
[11]) are relatively infrequent compared to the number of large neg-
ative higher-order interactions in the three well-known data-sets
used in our experiments. We further characterize the circumstances
where the higher-order interactions provide the most significant
improvements.

CCS CONCEPTS

• Information systems → Collaborative and social comput-

ing systems and tools; •Computingmethodologies→ Learn-

ing linear models.

KEYWORDS

collaborative filtering, recommender systems, linear models, higher
order interactions

ACM Reference Format:

Harald Steck and Dawen Liang. 2021. Negative Interactions for Improved
Collaborative Filtering: Don’t go Deeper, go Higher. In Fifteenth ACM
Conference on Recommender Systems (RecSys ’21), September 27-October

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8458-2/21/09.
https://doi.org/10.1145/3460231.3474273

1, 2021, Amsterdam, Netherlands. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3460231.3474273

1 INTRODUCTION

Deep learning approaches have led to remarkable improvements
in many applications in recent years, including collaborative filter-
ing, e.g., [9, 19–21, 23, 26, 27, 33, 35, 43, 45]. Due to their nonlinear
activation functions, deep models are able to learn higher-order
interactions implicitly among several input-features in theory. This
capability may, however, not materialize in practice [5]. To this end,
various mechanisms geared to modeling higher-order interactions
in deep nonlinear models have been developed, e.g., [5, 9, 10, 16, 18,
24, 25, 28, 34, 36, 41, 42, 44]. In these models, higher-order interac-
tions are typically modelled in the latent embedding space. It was
experimentally found [8, 39], however, that a (too) low dimensional
embedding-space (due to the bottleneck architecture typically used)
can severely degrade the prediction accuracy of the model.

This motivated us in this paper to integrate higher-order inter-
actions into a full-rank model. For this reason, we start out with
a simple linear model without a hidden layer, in particular, the
Embarrassingly Shallow AutoEncoder (easer) [37], a recent simpli-
fication of the Slim model [29], which has obtained state-of-the-art
ranking accuracy in the experiments in [37], even compared to
deep nonlinear models. This model learns pairwise relations, i.e.,
between each item i in the input, and each item j in the output of
the autoencoder. This is briefly reviewed in Section 2. We extend
this model by explicitly adding higher-order relations to its input in
Section 3. For instance, given that a user interacted with two items
i and k in the input, item j in the output is predicted using a triplet-
relation in the proposed model. Given that triplet-relations are more
expressive than a sum of pairwise relations, the ranking accuracy
of the resulting model significantly improved in our experiments,
conducted on three well-known data sets. Compared to various
baseline approaches, including several state-of-the-art deep nonlin-
ear models, we observed competitive ranking results on the smaller
data sets, while the proposed approach considerably outperformed
all baseline models on the larger data set, see Section 5. The simplic-
ity of our approach aids the explainability of the learned model: we
find that most third-order relations are negative in our experiments,
which mainly benefits the less active users. We provide a detailed
analysis and characterize the circumstances where the higher-order
interactions provide the most significant improvements.

2 REVIEW: PAIRWISE MODEL

This section briefly reviews the Embarrassingly Shallow AutoEn-
coder (easer) [37], which is then extended by adding higher-order

34

https://doi.org/10.1145/3460231.3474273
https://doi.org/10.1145/3460231.3474273

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Steck and Liang

interactions in Section 3. The easer model is obtained as a simplifi-
cation of the well-known Slimmodel [29] by dropping the L1-norm
regularization and the non-negativity constraint on the learned
parameters. In the experiments in [37], it outperformed various
models that were more complex, including deep nonlinear models.

Given a set of (training-) usersU and a set of items I that can
be recommended to the users, let the user-item interaction-data be
given in terms of the matrix X ∈ R |U |×|I | . While the entries in
this matrix may be real-valued in general, X is a binary matrix in
our experiments, where 1 indicates that a user played a video/song,
and 0 otherwise. The easer model is based on a parameter-matrix
B ∈ R |I |×|I | that is learned by solving the least-squares problem

| |X − X · B | |2F + λB · | |B | |2F
s.t. diag(B) = 0

(1)

where | | · | |F denotes the Frobenius norm, and λB is the training
hyper-parameter of the L2-norm regularization, which is tuned
via cross-validation to avoid overfitting. The constraint of a zero-
diagonal is crucial as to prevent the model from overfitting towards
the identity matrix B = I , see also [29, 37]. Eq. 1 can be minimized
in closed form using the method of Lagrangian multipliers as to
account for the equality constraint, resulting in the solution [37]:

B̂ = I −P ·diagMat(1⊘ diag(P)) where P = (X⊤X +λB · I)−1

(2)
where diagMat(·) denotes a diagonal matrix, diag(·) the diagonal
of a matrix, and ⊘ the elementwise division. The learned matrix B̂
can then be used to predict the personalized scores of all the items
i ∈ I for a given user u ∈ U by computing the dot-product Xu, · · B̂,
whereXu, · is the (row-) vector of the useru’s past interactions with
the items.

3 HIGHER-ORDER MODEL

In this section, we outline a simple yet effective higher-order exten-
sion of the easer model from the previous section. The resulting
model may also be viewed as an improvement of the HOSLIMmodel
[11], which also captures higher-order interactions.

3.1 Data Representation

First, considering the easer model in the previous section, we can
see that it is based on a pairwise matrix B, where an entry Bi, j
captures the pairwise relation between item i that the user has
played and the item j whose score is to be predicted. If the user
played two items in the past, say, i and k , then this model predicts
the score Bi, j + Bk, j for item j, which is the sum of two pairwise
terms Bi, j and Bk, j . A model that is restricted to pairwise relations,
like (i, j) and (k, j) in this running example, is obviously less ex-
pressive / powerful than a model that is able to directly capture
higher-order relations, like the triplet-relation (i,k, j) in this exam-
ple. More specifically, this triplet-relation is a relation between the
pair (i,k) played by the user, and the item j whose score is to be
predicted. In place of the pair (i,k), in the general case, one may use
a set S of items played by the user for predicting item j, resulting
in the higher-order relation (S, j) of the order |S| + 1. Note that
this notation also includes the original pairwise relation as used in
easer[37] when the set S only contains one item i .

X

users →

items →
1 …………... n

pair (i,k):
i and k played

pair (i,k):
i and k played

i
k1

1

fnon-linear
0

pairs →
1...r m

users →

Z M

pairs →
1...r m

T

Figure 1: General framework for creating higher-order

training-data Z from the given user-item interaction data X
(see text for details).

A natural choice for representing higher-order relations are high-
dimensional tensors. In this paper, we flatten high-dimensional
tensors to matrices. In this process, we retain only the m most
‘relevant’ higher-order relations (e.g., by the number of occurrences
in the data), as to keep the resulting matrices of manageable size for
computational reasons. We explored different ways of determining
the ‘relevant’ higher-order relations in our experiments in Section
5.1. Once we have determined a collection of ‘relevant’ higher-order
relations Sr (r = 1, ...,m) that we want to use, we can now define
the model.

First, let us focus on the input of the model, i.e., the collections
of distinct sets Sr (r = 1, ...,m) of the higher-order relations (Sr , j)
(i.e., we ignore items j at this step, given that the scores predicted for
items j are the output of the model). To represent all these sets Sr ,
we define a matrixM ∈ {0, 1}m×|I | as follows: row r ∈ {1,,m}

of matrixM corresponds to a |Sr |-hot encoding of the set Sr , i.e.,
Mr,i = 1 if i ∈ Sr , while all other entries are set to 0. Matrix
M can now be used to generate the higher-order training data
Z ∈ R |U |×m from the given user-item interaction-matrix X (as
illustrated in Figure 1): first, the matrix multiplication X · M⊤ is
computed, and then a general nonlinear function fnonlinear may
be applied elementwise. In our running example where set Sr is
comprised of 2 items (i,k), this nonlinear function is simply the
thresholding at 2–so that the entry Zu,r is 1 if and only if the user
played both items i andk in setSr , and 0 otherwise. Other nonlinear
functions besides thresholding may be used here, but are beyond
the scope of this paper. The resulting matrix Z thus captures for
each user u, whether the higher-order relation Sr is present in the
user’s interaction-history.

3.2 Training Objective

Corresponding to the higher-order training matrix Z , we now in-
troduce the additional parameter-matrix C ∈ Rm×|I | besides the
pairwise parameter-matrix B as in easer. The proposed higher-
order model consists of the two matrices B and C , both of which
have to be learned. This model predicts the score of item j for user
u according to Su, j = Xu, · · B ·, j + Zu, · · C ·, j , where Xu, · denotes
row u and B ·, j refers to column j. This is illustrated in Figure 2.

For computational efficiency, we use least-squares for learning
the two parameter-matrices B and C , i.e., we minimize the squared

35

Negative Interactions for Improved Collaborative Filtering:
Don’t go Deeper, go Higher RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

X B

users →

items →
1 …………... n

predictX

items →
1 …………... n

users →

items →
1 …i…...…k... n

pairs →
1...r m

Z

C

1...r m

pairs →

pair (i,k)0 0

Figure 2: Learning the model-parameters B (pairwise) and

C (higher-order) from the given data-matrices X and Z (see

text for details).

error:
∥X − XB − ZC∥2F + λB · ∥B∥2F + λC · ∥C∥2F
s.t. diag(B) = 0

C ⊙ M = 0
(3)

where | | · | |F denotes the Frobenius norm and ⊙ denotes the elemen-
twise product. We used two separate L2-norm regularization terms
as to control the ‘balance’ between the pairwise and higher-order
part of the model (e.g., as λC becomes extremely large, the learned
parameters in C shrink towards zero so that the resulting model
essentially becomes the pairwise base-model easer).

The two constraints are essential for avoiding overfitting: given
that the entryCr, j captures the higher-order relation of (Sr , j), the
constraint C ⊙ M = 0 on C is crucial when learning C (recall that
M is pre-determined based on which higher-order relations are
selected). This constraint is analogous to the constraint of a zero
diagonal in the pairwise matrix B, as to avoid the trivial identity
solution: as illustrated in Figure 2, if row r of C refers to the set
Sr = {i,k} in our running example, then Zu,r = 1 indicates that
useru played both items i and k , and hence we may learn the trivial
solution Cr,i = 1 and Cr,k = 1 (which predicts the scores of i and
k based on {i,k} themselves, instead of predicting the scores of
i and k from the other items I \ {i,k}). This is prevented by the
constraint, as it forces Cr,i = 0 and Cr,k = 0 due to the fact that
Mr,i = 1 andMr,k = 1 by construction.

3.3 Update Equations for Training

The constrained optimization problem in Eq. 3 may be minimized
by using the method of Lagrangian multipliers, together with its
generalization, the Alternating Directions Method of Multipliers
(ADMM) [7, 13, 15], see also [40]. To this end, we first introduce
the additional matrix D and re-write Eq. 3 equivalently as follows:

∥X − XB − ZC∥2F + λB · ∥B∥2F + λC · ∥C∥2F
s.t. diag(B) = 0

D ⊙ M = 0
D = C

(4)

Now we can write down the augmented Lagrangian concerning
the equality constraint C = D:

Lρ (B,C,D, Γ) = ∥X − XB − ZC∥2F + λB · ∥B∥2F + λC · ∥C∥2F

+ 2 · ρ · ⟨Γ,C − D⟩F + ρ · ∥C − D∥2F
s.t. diag(B) = 0

(5)

where Γ ∈ Rm×|I | denotes the matrix of Lagrangian multipliers
associated with the constraint C − D = 0. Note that most entries
in Γ are actually zero–only when Mr,i = 1, we have Γr,i , 0,
i.e., only those few entries are constrained to zero in D, while all
other entries in D and C are unconstrained. Moreover, ⟨Γ,C − D⟩F
denotes the Frobenius inner product of the matrices Γ and C − D.
Finally, the scalar ρ > 0 is the so-called penalty parameter in
the augmented Lagrangian, and ρ is an additional training-hyper-
parameter (besides the L2-norm regularization parameters λB and
λC), which may be optimized by cross-validation.

ADMM proceeds with iterative updates, and comes with several
convergence guarantees (e.g., see [7]). At iteration k + 1, each of
the four matrices B, C , D, and Γ are updated as follows:

B̂(k+1) = argmin
B

Lρ
(
B, Ĉ(k), D̂(k), Γ̂(k)

)
s.t. diag(B) = 0 (6)

Ĉ(k+1) = argmin
C

Lρ
(
B̂(k+1),C, D̂(k), Γ̂(k)

)
(7)

D̂(k+1) = (1 −M) ⊙ Ĉ(k+1) (8)
Γ̂(k+1) = Γ̂(k) + Ĉ(k+1) − D̂(k+1) (9)

The closed-form updates for B̂(k+1) and Ĉ(k+1) are given below.
The update of D̂(k+1) is simply the projection of Ĉ(k+1) onto the
permissible domain according to the constraint D ⊙ M = 0; in Eq.
8, the matrix of ones is denoted by 1, and ⊙ is the elementwise
product of the matrices. Note that the update of the Lagrangian
multipliers in matrix Γ̂(k+1) in Eq. 9 only affects those entries Γ̂(k+1)r, j

whereMr, j = 1, as otherwise D̂(k+1)
r, j = Ĉ

(k+1)
r, j .

Update of B: The optimization problem with the equality con-
straint in Eq. 6 can be solved in closed form using the method of
Lagrangian multipliers (similar to [37]): the constraint diag(B) = 0
can be enforced using the vector of Lagrangian multipliers η, and
adding the term η⊤ · diag(B) to the augmented Lagrangian in Eq. 5.
Setting its derivative w.r.t. B to zero, and solving for B, yields:

B̂(k+1) = I − P ·

(
X⊤ZĈ(k) − diagMat(η)

)
(10)

where P = (X⊤X + λB · I)−1 (11)

η =
1 − diag(PX⊤ZĈ(k))

diag(P)
(12)

where 1 denotes a vector of ones, and the division of the vectors
is elementwise in Eq. 12, yielding the solution for the vector of
Lagrangian multipliers. Note that both matrices P and PX⊤Z may
be pre-computed.

Update of C: Setting the derivative of the augmented La-
grangian (Eq. 5) w.r.t. C to zero, and solving for C immediately
yields the update-equation:

Ĉ(k+1) =
(
Z⊤Z + (λC + ρ) · I

)−1
·

(
Z⊤X · (I − B̂(k+1)) + ρ · (D̂(k) − Γ̂(k))

)
(13)

Note that both (Z⊤Z+(λC+ρ)·I)
−1 andZ⊤X may be pre-computed.

36

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Steck and Liang

3.4 Comparison to HOSLIM

Asmentioned earlier, our proposed approach can also be interpreted
as an improvement to HOSLIM [11] whose training objective is
similar to Eq 3:

∥X − XB − ZC∥2F + λB · ∥B∥2F + λC · ∥C∥2F + γB · ∥B∥1 + γC · ∥C∥1

s.t. diag(B) = 0
C ⊙ M = 0

Bi, j ≥ 0 ∀i, j
Cr, j ≥ 0 ∀r , j

(14)
The two important differences are as follows:

(1) First, the learned values in B andC are constrained to be non-
negative in HOSLIM [11], analogous to the Slim model [29].
In the three well-known data sets used in our experiments in
Section 5, we found the negative higher-order interactions to
be actually much more important than the positive ones. Ex-
cluding them in the HOSLIMmodel [11] hence unnecessarily
reduces ranking-accuracy by a large amount.

(2) Second, the HOSLIM model [11] also applies L1-norm regu-
larization to B andC as to obtain a sparse model, again analo-
gous to the Slimmodel [29]. Concerning the Slimmodel [29],
it was found in the various experiments in [40] that L1-norm
regularization as well as the non-negativity constraint im-
prove prediction accuracy only for extremely small data sets
(i.e., number of users ≪ number of items)–this might have
been the reason for using them in the Slim and HOSLIM
models–but when the data sets are of a realistic size (like
the three data sets in our experiments), the L1-norm regu-
larization did not significantly improve prediction accuracy,
while the non-negativity constraint actually hurt the ranking
accuracy in the experiments in [40].

Apart from that, we use a different algorithm than in HOSLIM for
minimizing the training-objective, following the results in [40],
where it was shown for the Slim model that, when the item-item
matrixX⊤X fits into memory, the Alternating Directions Method of
Multipliers (ADMM) [7, 13, 15] can be more effective in minimizing
such a constrained least-squares problem–in term of training time
as well as the prediction accuracy of the learned model.

3.5 Possible Extensions

Throughout the section, we use a running example where Sr con-
sists of two items, which means the model is capable of capturing
triplet-relations. A straightforward yet effective extension is to in-
crease the size of Sr to incorporate even higher-order interactions.
Unfortunately this will also increase the difficulty of selecting the
‘relevant’ relations to construct the matrix M in Section 3.1. Fur-
thermore, it is not unreasonable to assume diminishing returns as
we add 4th- or even higher-order interactions.

Alternatively, we can rewrite the matrix notation of the pairwise
model in Eq 1 into the so-called auto-normal parametrization [3,
4, 38]: The model predicts the score of item j for user u as Su, j =∑
i,j Xu,iBi, j . Similar to Factorization Machines [31, 32], this auto-

normal parametrization can be extended to include a (factorized)
triplet-relation in the form of a D-dimensional latent factor model

(D ≪ |I|):

Su, j =
∑
i,j

Xu,iBi, j +
∑
i<k

i,j,k,j

Xu,iXu,k

(D∑
d=1

®ν
(j)
d ®γ

(i)
d ®γ

(k)
d

)
where both ®ν (j) ∈ RD and ®γ (i), ®γ (k) ∈ RD are latent factors which
will be estimated alongside the parameter-matrix B. Note that we
distinguish the factors associated with the item j in the output
(®ν (j)) with the items i,k in the input (®γ (i), ®γ (k)). One advantage of
this factorized formulation is that we are able to incorporate all
possible triple-relations, instead of being constrained with only a
pre-selected set of m ‘relevant’ relations. The triplet interaction
term can be efficiently computed in linear time w.r.t. both |I | and D
similar to FactorizationMachines. Making use of the recent advance
in Polynomial Networks [6], this formulation can be extended be-
yond triplet-relations with tractable computation. We leave this
promising direction as future work.

4 RELATEDWORK

It is common practice to add higher-order interaction terms to the
linear regression model, which perhaps is the simplest linear model.
Depending on the properties of the data set, this can considerably
improve prediction accuracy. While the higher-order features are
nonlinear functions of the original features in the training-data,
the advantage of this approach is that the resulting model remains
linear in the parameter space. As a consequence, it is efficient to
train and to make predictions.

This idea of adding higher-order interactions has been applied
to linear collaborative filtering approaches in the past: for instance,
the Slim model [29] was extended to the HOSLIM model [11], and
the Factorization Machine [31, 32] was extended in [6]. For both
of these linear model-classes, significant improvements in ranking
accuracy were observed when adding higher-order interactions
[6, 11].

In this paper, we extended the easer model [37] by adding higher-
order relations. Given that easer is a simplified version of Slim,
the proposed approach in this paper can be understood as a simpli-
fication of HOSLIM, namely, we removed the non-negativity and
sparsity constraints, as outlined in Section 3.4. This not only reduces
the computational cost of training this model, but also results in sig-
nificant improvements of the ranking-accuracy (unless the training
data are extremely small) — The interested reader is referred to [40]
for a detailed comparison of the pairwise models easer and Slim
and how each of the two constraints impacts the ranking-accuracy.
While the removal of the non-negativity constraint was crucial in
the pairwise model, we found in our experiments that it is even
more important when incorporating higher-order interactions.

Deep-learning approaches, having shown remarkable perfor-
mances in numerous areas (mostly around computer vision and
natural language processing), also entered the field of collaborative
filtering in recent years. Many network architectures have been
developed to solve various problems, e.g., [9, 19–21, 23, 26, 27, 33,
35, 43, 45]. A commonality of the various approaches for collabora-
tive filtering problems is their relatively shallow architecture (of
typically one to three hidden layers), which was empirically found
to obtain the best ranking-accuracy, e.g., [19, 23, 26, 27, 33, 35, 45].

37

Negative Interactions for Improved Collaborative Filtering:
Don’t go Deeper, go Higher RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Furthermore, dense low-dimensional embeddings are commonly
learned, whereas a sparse and relatively high-dimensional represen-
tation is used in SW-DAE [23]. Note that the latter is the strongest
baseline in our experiments. Our proposed model uses an even
higher-dimensional representation for an item i , i.e., column i in
the stacked matrices B and C , see Figure 2.

Even though deep non-linear models are able to learn higher-
order interactions (as well as any non-linearities) in theory, in
practice their capabilities were, however, found to be quite limited
[5]. Several different approaches for overcoming this limitation
were proposed in recent years. From one perspective, providing
explicit interactions in the input layer (e.g., [9, 16, 25]), may be
distinguished from learning / modeling interactions in the latent-
embedding space (e.g., [5, 41, 42]). From another perspective, one
may categorize the approaches by the modeling technique used,
like extending the ideas underlying the factorization machine (FM)
[31] to deep networks [16, 18, 25, 44], using different variants of the
attention mechanism [24, 36, 44], crossing latent embeddings in a
multiplicative way [5, 41, 42], or deploying a logarithmic transform
layer [10]. A third perspectivemight be regarding the order of the in-
teractions that can (easily) be modelled: while FM-based approaches
are typically restricted to feature-interactions up to second order1,
various other approaches allow for much higher orders. However,
[28] argues that third (and higher) order feature-interactions may
not be worth the extra computational cost. Note that in our experi-
ments we also did not find statistically significant improvements
when adding third (or higher) order feature-interactions. Finally,
most of these approaches consider higher-order interactions be-
tween additional features and user-item interaction data, while
we primarily consider interactions within the items that a user
interacted with.

In our proposed approach, the selection of the explicit interac-
tions is automated, hence avoiding the need for feature-engineering.
Moreover, the linear nature of our approach allows for easier inter-
pretability / explainability of the learned parameters regarding the
interactions. This enables us to obtain deeper insights toward the
model’s performance.

Apart from that, the use of (too) low dimensional embeddings
can result in a significant loss of relevant information that can be
propagated through a deep network [8, 39], resulting in reduced
ranking-accuracy. This suggests that learning interactions in the
low-dimensional embedding spacemight be less effective than using
explicit feature-interactions. This was an additional motivation for
us to explore the proposed full-rank model.

Finally, in a meta-analysis [12], it was shown that many of these
deep-learning approaches are not easily reproducible and even
when they are, they can often be outperformed by carefully-tuned
linear methods. We hope that our work provides additional insights
into the comparison of deep models vs. simple linear baselines and
offers an alternative route to improve the expressive power of these
models.

1Note that a second-order feature-interaction corresponds to a third-order relation (as
used in this paper) among the (two) input features and the target/output-variable.

5 EXPERIMENTS

In this section, we study the performance of our proposed approach
both quantitatively and qualitatively. We highlight the following
results:

• We demonstrate empirically that a relatively small number
of higher-order relations is sufficient to obtain considerable
improvements over the pairwise base-model (easer) in our
experiments on three well-known data sets. Moreover, the
proposed model outperforms the various deep nonlinear
models on the larger data set in our experiments, while
remains competitive on the smaller data sets. To this end, we
introduce the notion of effective catalog size, as to understand
the performance differences between our approach and deep
nonlinear models across the datasets.

• We decompose the predicted scores into the pairwise and
higher-order components and observe that the higher-order
components are skewed towards negative values. By forcing
the higher-order components to be positive (as in HOSLIM),
we observe a considerable reduction in ranking-accuracies.

• We break down the performance gains of our proposed
model by user activity and to our surprise, the users with rel-
atively low activity have a sizable gain, while the users with
many interactions mostly maintain the same performance.

The source code is available at
https://github.com/hasteck/Higher_RecSys_2021.

5.1 Experimental Protocols

For reproducibility and for a valid comparison to the results in
[26], we run the same experiments as in [26], using their code2
for pre-processing and filtering the data, as well as for evaluating
the learned models. Besides Recall@20, Recall@50, and normalized
Discounted Cumulative Gain (nDCG@100), which were used in
[26], we also report Recall@10 which provides additional insights
towards the head of the rankings. We also use the same three data
sets as in [26]: MovieLens 20 Million (ML-20M) data [17], Netflix
Prize (Netflix) data [1], and Million Song Data (MSD) [2]. For
comparison, Table 1 also shows the results of all the various models
evaluated in [26], which now serve as baselines:

• Sparse Linear Method (Slim) [29]: This is the original pair-
wise model, which was simplified to the easer model in [37].
We described it in Section 2.

• Weighted Matrix Factorization (wmf) [22, 30]: A linear low-
dimensional model.

• Collaborative Denoising Autoencoder (cdae) [43]: A non-
linear model with one hidden layer.

• Denoising Autoencoder (Mult-dae) and Variational Au-
toencoder (Mult-vae

pr) [26]: Both are deep non-linear
autoencoders. The following architecture was found to re-
sult in the best ranking accuracy in [26]: input layer →
600-dimensional layer → 200-dimensional layer → 600-
dimensional layer→ output layer.

In Table 1, we additionally report the results of the following recent
improvements of autoencoders, which reported results on the same
three data sets as used in our experiments:

2https://github.com/dawenl/vae_cf

38

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Steck and Liang

• RecVAE [35]: improves onMult-vae pr [26] in several ways,
including a user-dependent β in the β-VAE model, a com-
posite prior, and denoising, among others.

• RaCT [27]: an actor-critic based learning-to-rank approach,
built on top of the variational autoencoder.

• SW-DAE [23]: a sparse autoencoder, where the connectivity
to the (single) hidden layer is learned by clustering the items
based on similarity.

Apart from these baselines, we also compare with a baseline
similar to HOSLIM [11] by forcing the higher-order parameter
matrixC to be non-negative, which is the key difference (see Section
3.4).3

In our experiments, we trained the proposed model with ADMM
for 40 iterations, which was sufficient for convergence (see also [7]).
We optimized the three training hyper-parameters ρ, λB , and λC in
Eq. 5 by grid-search for each model and data-set. Not surprisingly,
the optimal λB in the higher-order model in Eq. 3 (and equivalently
Eq. 5) was essentially identical to the optimal λB in the pairwise
model in Eq. 1, and took the values of about 500 on ML-20M, 1,000
on Netflix, and 200 on MSD data.

While the pairwise relations are of the form that one item is
used to predict the score of the other one, the triplet-relations
are such that a set of two items is used to predict the score of the
third one. To determine such sets, we obtained the best ranking-
accuracies when we applied a threshold t to the strictly upper
triangular matrix of the item-item matrix X⊤X ,4 where X is the
given user-item interaction training-data, i.e., the most frequent
pairs were selected. By changing the threshold value t , the number
of ‘relevant’ higher-order interactions m can be controlled. The
restriction to the strictly upper triangular matrix ensures that we
obtain distinct sets of two items–in other words, recall the selection
matrixM defined in Secion 3.1, if (X⊤X)i,k > t for i < k , we have
a row r inM whereMr,i = 1 andMr,k = 1.

5.2 Experimental Results

Table 1 shows that the ranking accuracy on the test data is im-
proved beyond the pairwise base-model (easer) as we includem
triplet-relations (pairs + triplets). We can see that already a quite
small number of 500 triplet-relations leads to improvements over
the pairwise model, while 40,000 triplet-relations yield significant
improvements. Moreover, whenm is increased by a factor of 4-5
from one line to the next in Table 1, we observe diminishing returns
in terms of gains in ranking accuracy. Note that evenm = 40, 000
represents only 0.02% of all possible sets of two items on the ML-
20M data, which suggests that a small number of higher-order
relations is sufficient to obtain most of the improvements. Finally,
when we constrain the higher-order weights to be non-negative

3The only difference between this baseline and HOSLIM is that we dropped the two
L1-norm regularization terms from Eq. 14. This reduces the number of (interdependent)
hyperparameters that need to be tuned from four to two, and hence greatly saves
computation-time, resulting in better scalability.
4We also tried other strategies for determining the relevant higher-order relations, like
first standardizing the trainingmatrixX (such that each column has zeromean and unit
variance), and then thresholding the resulting item-item matrix X⊤X , i.e., correlation
matrix. This focuses more on similar items, irrespective of their popularities. In our
experiments, however, this was inferior to using the original matrix X , which suggests
that the effectiveness of the approach also hinges on the fact that the higher-order
relations included in the model occur in a large number of users.

(‘pairs + triplets ≥ 0’, like in HOSLIM), we can observe a consid-
erable reduction in the gains. We provide a detailed discussion in
Section 5.3.

We also experimented with including 4th order relations in addi-
tion to the pairwise and triplet relations. To this end, we applied a
threshold to the matrix X⊤Z , which was already computed when
training the model that contains triplet relations. This is obviously
a greedy approach for determining higher-order relations, and is
hence not guaranteed to find all relevant higher-order interactions,
but has the advantage of being computationally tractable. In our
experiments, we did, however, not observe any significant improve-
ments when adding 4th order relations on top of the pairwise and
triplet relations.

Table 1 also shows that our proposed approach yields state-of-
the-art results compared to the various baseline models: it outper-
forms all models evaluated in [26] on all three data sets. Moreover,
it is also competitive compared to the various deep non-linear au-
toencoders (RecVAE [35], RaCT [27], and SW-DAE [23]): Table 1
shows that the proposed model with 40,000 triplet-relations outper-
forms all three baselines on the largest data set (MSD) by a large
margin (5.4% better than the best baseline, SW-DAE), while it is
only slightly worse on the two small data sets (2.6% on ML-20M
and 0.7% on Netflix compared to the best baseline).

Effective Catalog Size: We believe that the differences in the
ranking-results on the three data sets are due to two reasons: (1)
the catalog size of theMSD data is about twice as large as the one of
the other two data sets (see data-set properties in Table 1), and (2)
the (approximate) power-law distribution of the item-popularities
drops off very quickly for the two data setsML-20M and Netflix, i.e.,
they contain a small number of very popular items (head), and a
large number of unpopular items (long tail). In contrast, the power-
law distribution in the MSD data is less extreme. We can capture
both effects by the catalog entropy:

H = −
∑
i ∈I

pi logpi

where pi is the normalized popularity of item i (i.e., the number
of users who played it). Given that the entropy may be difficult to
understand intuitively, we ask the following question: considering a
catalog, where all items have the same popularity, how many items
does this catalog have to contain so that its entropy is the same as
the one of the real-world catalog with a power-law distribution. It
can easily be seen that this effective catalog size is given by

n = exp(H),

where H is the entropy of the real-world catalog from above. As
the effective catalog size shrinks, the recommendation problem
becomes easier, as the recommender system can rely increasingly on
the (unpersonalized) item-popularities. Conversely, as the effective
catalog size increases, high ranking accuracies can only be obtained
by making highly personalized recommendations, which is a more
difficult task. Also note that the effective catalog size is different
from other metrics in the literature, like catalog coverage, which is
a property of the recommender system (and not of the data), e.g.,
see [14]. Table 1 shows that the effective catalog size of the MSD
data is about seven times larger than the one of the other two data
sets, even though the actual catalog sizes differ by only a factor of

39

Negative Interactions for Improved Collaborative Filtering:
Don’t go Deeper, go Higher RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

−2 −1 0 1 2 3
predicted scores

10−7

10−5

10−3

10−1

de
ns

ity
 (i

n
lo

g
sc

al
e)

Figure 3: Distribution of the scores predicted by the higher-

order model on the test set (black line), and split into the

scores’ components predicted from pairwise relations (blue

dashed line) and triplet-relations (red dotted line): while the

pairwise component is skewed to positive values (dashed),

the triplet-component is skewed to negative values (dotted).
We obtained these figures usingm = 40, 000 higher-order re-
lations on theML-20M data, and qualitatively similar figures

on the other two data sets. See text for details.

about two. Given that the effective catalog size of theMSD data is so
much larger than the one of the other two data sets, this indicates
that the MSD data is a considerably more challenging data set than
the other two.

This suggests that the model has to be considerably more expres-
sive on the MSD data than on the other two datasets to be able to
capture all the relevant item-item relations. We suspect that the bot-
tleneck architecture (low-dimensional latent factors) of deepmodels
significantly restricts their ability in the case with a large effective
catalog size (see also [8, 39] for relevant discussions). A remedy
might be to increase the dimensionality of the latent factors, but
this may largely be prohibitive due to the corresponding increase
in training time (SW-DAE [23] alleviates this problem by learning a
sparse high-dimensional bottleneck layer and it outperforms other
baselines by a large margin on MSD). The bottleneck-architecture
may hence constitute a practical limitation of deep models for col-
laborative filtering problems, and severely limit their ability to learn
the relevant relations among an effectively-large number of items.

The linear model considered in this paper, on the other hand,
avoids this problem, as it is a full-rank model, i.e., it explicitly learns
each pairwise and (a pre-selected subset of) higher-order relations.
For this reason, the linear model has many more parameters than
the deep models, which gives it sufficient expressive power to fit
the data better (while overfitting can be controlled by L2-norm
regularization). From this perspective, increasing the number of
‘relevant’ higher-order interactions in the model also increases its
number of parameters, further improving the expressive power
of the model, which could partially explain the resulting improve-
ments in ranking-accuracy observed in Table 1.

5.3 Exploratory Analysis

In this section, we take a deep dive into the model, and answer the
following two questions:

What is captured by the higher-order component of the

model? Figure 3 provides deeper insights into the learned higher-
order model, in particular, how the predicted scores decompose

into their pairwise and higher-order components. Using the test-
data X (test) and Z (test), we computed the score-matrix S(test) =
X (test) · B̂ +Z (test) · Ĉ , which is comprised of all the scores predicted
by the learned pairwise and higher-order components of the model
for all the test-users regarding all available items. In addition, we
also computed its two components separately, the scores S(test)

B̂
=

X (test) · B̂ based on the learned pairwise matrix B̂ (in the ‘pairs +
triplets’ model), and the scores S(test)

Ĉ
= Z (test) · Ĉ based on the

learned higher-order relations. Figure 3 shows the histograms of
the scores in these three matrices: S(test), S(test)

B̂
, and S(test)

Ĉ
. We can

see that the scores based on the pairwise component of the model
(dashed line) are skewed towards positive values,5 while the scores
based on the triplet-component (dotted line) are skewed towards
negative values. This suggests that many of the triplet-relations
provide downward corrections to the scores that are predicted by
summing up the pairwise terms, while only few triplet-relations
provide upward corrections.

This also makes intuitive sense, which may be seen in the fol-
lowing example. If there exists a group of ‘similar’ videos, where
the predicted scores should ideally be independent of the number
of videos that the user has already played from this group, then the
higher-order downward corrections enable the model to learn this.
This is also true if the scores should ideally grow in a sub-linear
way with the number of videos that the user has played from this
group. Note that summing up the pairwise relations in the model
results in an approximate linear increase in the scores within a
group. Conversely, if there exists a group of ‘similar’ videos, where
the predicted scores should ideally grow in a super-linear way with
the number of videos that the user has already watched from this
group, then the higher-order upward corrections enable the model
to provide such an extra boost to the scores on top of the pairwise
relations. Groups that benefit from downward corrections are ap-
parently more prevalent in the data sets in our experiments than
are the groups that benefit from upward corrections, cf. skew of
the dotted line in Figure 3. This is also supported by the fact that
the scores predicted by the higher-order model (solid line) are less
spread out than the scores of its pairwise component (dashed line),
where in particular many large positive values are considerably
reduced.

This is a fundamental difference to the HOSLIM model [11],
where the higher-order weights are constrained to be non-negative,
and hence are (unnecessarily) restricted to provide only an upward
correction to the scores predicted by the pairwise component.When
we constrained the higher-order weights to be non-negative in our
model (like in HOSLIM), the gains were considerably reduced, see
‘pairs + triplets ≥ 0’ compared to ‘pairs + triplets’ in Table 3.

How does adding higher-order interactions help? It seems
reasonable to assume that by adding higher-order interactions into
the model, the users who interact with many items will benefit more
than the users who only interact with a small amount of items, as
the former group has more triplet-relations to take advantage of
the higher-order term. To verify this hypothesis, we plot the test
5Note that this does not contradict the finding in [37] that 60% of the pairwise weights
were negative: first, scores and weights are not the same; second, 60% refers to the
count (of weights) in [37], while here the skew refers to values (of the scores), i.e.,
some large positive values.

40

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Steck and Liang

Table 1: Ranking accuracy on the test set when a different number m of higher-order relations are included in the model,

compared to the pairwise model and various baselines (with standard errors ≈ 0.002, 0.001, and 0.001 onML-20M, Netflix, and
MSD data, respectively).

ML-20M Netflix MSD

Recall Recall Recall nDCG Recall Recall Recall nDCG Recall Recall Recall nDCG
models @10 @20 @50 @100 @10 @20 @50 @100 @10 @20 @50 @100

pairs (easer) 0.336 0.391 0.521 0.420 0.344 0.362 0.445 0.393 0.297 0.333 0.428 0.389
pairs + triplets (m = 500) 0.338 0.394 0.524 0.423 0.345 0.363 0.447 0.395 0.297 0.334 0.429 0.390
pairs + triplets (m = 2k) 0.340 0.396 0.526 0.425 0.347 0.366 0.448 0.397 0.298 0.334 0.429 0.390
pairs + triplets (m = 10k) 0.343 0.400 0.530 0.429 0.349 0.367 0.450 0.399 0.298 0.335 0.430 0.391
pairs + triplets (m = 40k) 0.344 0.402 0.534 0.431 0.351 0.369 0.453 0.401 0.300 0.337 0.431 0.392

pairs + triplets ≥ 0 (m = 40k) 0.340 0.396 0.527 0.426 0.346 0.365 0.448 0.396 0.298 0.335 0.429 0.390

reproduced from [26]:

Slim — 0.370 0.495 0.401 — 0.347 0.428 0.379 — did not finish in [26] —
wmf — 0.360 0.498 0.386 — 0.316 0.404 0.351 — 0.211 0.312 0.257
cdae — 0.391 0.523 0.418 — 0.343 0.428 0.376 — 0.188 0.283 0.237
Mult-vae pr — 0.395 0.537 0.426 — 0.351 0.444 0.386 — 0.266 0.364 0.316
Mult-dae — 0.387 0.524 0.419 — 0.344 0.438 0.380 — 0.266 0.363 0.313

further baselines:

RecVAE [35] — 0.414 0.553 0.442 — 0.361 0.452 0.394 — 0.276 0.374 0.326
RaCT [27] — 0.403 0.543 0.434 — 0.357 0.450 0.392 — 0.268 0.364 0.319
SW-DAE [23] — 0.410 0.549 0.442 — 0.370 0.458 0.404 — 0.317 0.416 0.372

data-set properties:

interactions 10 mil. 57 mil. 34 mil.
users 136,677 463,435 571,355
catalog size (# items) 20,108 17,769 41,140

catalog entropy H 7.719 7.968 9.897
effective catalog size: exp(H) 2,252 2,887 19,875

0.195

0.205

0.215

nD
CG

@
10

0

≤ 10 (***)

0.370

0.380

0.390

> 10, ≤ 100 (***)

0.480

0.490

> 100, ≤ 500 (***)

0.575

0.585

0.595
> 500, ≤ 1000 (*)

0.705

0.715

0.725

0.735

> 1000

pairs
pairs + triplets

Figure 4: Test nDCG@100 breakdown for users with increasing levels of activity. The title of each subplot indicates the range

of items the users in this group interacted with in the test dataset. The error bars represent one standard error. For each

subplot, a paired t-test is performed and * indicates statistical significance at α = 0.05 level, ** at α = 0.01 level, and *** at α=
0.001 level. The subplot with no * means that a statistically significant result is not obtained at any α level. We can see that

by adding higher-order interactions into the model, users who interact with a relatively small amount of items have a sizable

gain in ranking-accuracies, while users who interact withmany itemsmostly stay unchanged.We obtained these figures using

m = 40, 000 higher-order relations on the Netflix data, and qualitatively similar figures on the other two data sets.

nDCG@100 for groups of users with different levels of activity in
Figure 4, for the pairwise base-model (easer) and the higher-order
model (pairs + triplets). The title of each subplot indicates the range
of items the users in this group interacted with in the test dataset.
Interestingly, we observe that most of the gains in performance

come from the low-activity users, while the performance for high-
activity users mostly remains unchanged. We also performed a
paired t-test on each group (see the caption of Figure 4 for details)
and obtained statistically significant results for the groups with
mid-to-low activities.

41

Negative Interactions for Improved Collaborative Filtering:
Don’t go Deeper, go Higher RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

0.195

0.200

0.205

0.210

0.215

nD
CG

@
10

0

≤ 10 (***)

0.370

0.375

0.380

0.385
> 10, ≤ 100 (***)

0.475

0.480

0.485

0.490

0.495
> 100, ≤ 500 (***)

0.570

0.575

0.580

0.585

0.590

0.595
> 500, ≤ 1000 (***)

0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745

> 1000

pairs
(pairs + triplets)
- triplets

Figure 5: See the caption of Figure 4 for more details. We can see that the pairwise component of the ‘pairs + triplets’ model is

capable of much better modeling the users in the low-activity buckets. On the other hand, the pairwise component alone (i.e.,

without the triplet-component) is significantly outperformed by the pairwise base-model (ease
r
) for users with high-activity

level. This supports our hypothesis that the pairwise component focuses on low-activity users, while the triplet-component

focuses on high-activity users.

We hypothesize that the reason for these seemingly counter-
intuitive results is the ‘explain-away’ effect of the higher-order
components. From the spread of the histograms in Figure 3 we can
see that most of the triplet-relations provide downward corrections,
which mainly kick in for high-activity users, hence explaining
away the higher-order interactions from the data. This enables
the pairwise model to better focus on relatively low-activity users
without the interference of the higher-order interactions. To val-
idate this hypothesis, we perform an additional comparison on
the same dataset as in Figure 4, this time between the pairwise
base-model (easer) and the pairwise component of the ‘pairs +
triplets’ model, denoted as ‘(pairs + triplets) - triplets’ in Figure 5.
In aggregation, both achieve almost identical ranking accuracy in
terms of nDCG@100. However, we can clearly see that the pairwise
component of the ‘pairs + triplets’ model is capable of much better
modeling the users in the low-activity buckets. On the other hand,
the base-model (easer) is capable of significantly outperforming
the pairwise component for users with high-activity level,6 demon-
strating the importance of the higher-order component of the model
for the high-activity users.

6 CONCLUSIONS

In this paper, we extended a state-of-the-art linear model easer[37]
that learns pairwise relations among the items, by adding higher-
order interactions. The resulting model enables efficient optimiza-
tion via the Alternating Directions Method of Multipliers (ADMM)
[7, 13, 15] on realistically-sized datasets commonly used in the
literature. Despite the simplicity of the proposed approach, we
saw significant gains in ranking-accuracy compared to the pair-
wise model. Moreover, the proposed approach obtained competitive
results compared to the various state-of-the-art baselines in our ex-
periments, which includes several deep nonlinear autoencoders–in
particular, we found that the proposed approach outperformed all
the baselines by a large margin on the largest of the three data sets
in our experiments. To this end, we introduced the notion of effec-
tive catalog size to understand the performance differences between
our approach and deep nonlinear models across the datasets.

Furthermore, we observed that the majority of the learned triplet-
relations were negative, while the learned pairwise relations were
6While this does not hold for the mean for the users with >1000 activities in Figure 5,
note that this is not significant due to the large error bars.

more positive in our experiments. This suggests that many of the
triplet-relations provide a downward correction to the predicted
scores, which may otherwise be over-predicted when summing up
the pairwise terms.

Finally, we broke down the performance gains by user groups
of various activity levels and observed that the users with rela-
tively low activity have a more sizable gain, while the users with
many interactions mostly remain at the same level of ranking ac-
curacy. We hypothesize that the addition of the triplet-relations
‘explained away’ the higher-order interactions among the active
users, which enables the pairwise component to better focus on
relatively low-activity users without the interference of the higher-
order interactions.

REFERENCES

[1] J. Bennet and S. Lanning. 2007. The Netflix Prize. In Workshop at SIGKDD-07,
ACM Conference on Knowledge Discovery and Data Mining.

[2] T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, and P. Lamere. 2011. The Million
Song Dataset. In International Society for Music Information Retrieval Conference
(ISMIR).

[3] J. Besag. 1975. Statistical Analysis of Non-Lattice Data. The Statistician 24 (1975),
179–95.

[4] J. Besag. 1977. Efficiency of pseudo-likelihood estimation for simple Gaussian
fields. Biometrika 64 (1977).

[5] A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, and E.H. Chi. 2018. Latent
Cross: Making Use of Context in Recurrent Recommender Systems. In ACM
Conference on Web Search and Data Mining (WSDM).

[6] M. Blondel, A. Fujino, N. Ueda, and M. Ishihata. 2016. Higher-Order Factorization
Machines. In Advances in Neural Information Processing Systems (NIPS).

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. Distributed Optimiza-
tion and Statistical Learning via the Alternating Direction Method of Multipliers.
Found. Trends Mach. Learn. 3 (2011), 1–122.

[8] T. Chen, J. Lin, T. Lin, S. Han, C. Wang, and D. Zhou. 2018. Adaptive Mixture of
Low-Rank Factorizations for Compact Neural Modeling. In Advances in Neural
Information Processing Systems (NIPS).

[9] H.T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson,
G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and H.
Shah. 2016. Wide & Deep Learning for Recommender Systems. In Proceedings of
the 1st Workshop on Deep Learning for Recommender Systems (DLRS). 7–10.

[10] W. Cheng, Y. Shen, and L. Huang. 2020. Adaptive Factorization Network: Learning
Adaptive-Order Feature Interactions. arXiv:1909.03276.

[11] E. Christakopoulou and G. Karypis. 2014. HOSLIM: Higher-Order Sparse Linear
Method for Top-N Recommender Systems. In 18th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD).

[12] M. F. Dacrema, P. Cremonesi, and D. Jannach. 2019. Are we really making much
progress? A worrying analysis of recent neural recommendation approaches. In
ACM Conference on Recommender Systems (RecSys).

[13] D. Gabay and B. Mercier. 1976. A dual algorithm for the solution of nonlinear vari-
ational problems via finite element approximations. Computers and Mathematics
with Applications 2 (1976), 17–40.

42

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Steck and Liang

[14] M. Ge, C. Delgado-Battenfeld, and D. Jannach. 2010. Beyond Accuracy: Evaluating
Recommender Systems by Coverage and Serendipity. In ACM Conference on
Recommender Systems (RecSys).

[15] R. Glowinski and A. Marrocco. 1975. Sur l’approximation, par elements finis
d’ordre un, et la resolution, par penalisation–dualite, d’une classe de problems de
Dirichlet non lineares. Revue Francaise d’Automatique, Informatique, et Recherche
Operationelle 9 (1975), 41–76.

[16] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. 2017. DeepFM: A Factorization-Machine
based Neural Network for CTR Prediction. In Int. Joint Conf. on Artificial Intelli-
gence (IJCAI).

[17] F. M. Harper and J. A. Konstan. 2015. The MovieLens Datasets: History and
Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5 (2015). Issue
4.

[18] X. He and T.-S. Chua. 2017. Neural Factorization Machines for Sparse Predic-
tive Analytics. In ACM Conference on Research and Development in Information
Retrieval (SIGIR).

[19] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. 2017. Neural Collaborative
Filtering. In International World Wide Web Conference (WWW).

[20] B. Hidasi and A. Karatzoglou. 2017. Recurrent Neural Networks with Top-k Gains
for Session-based Recommendations. In International Conference on Information
and Knowledge Management (CIKM). arXiv:1706.03847.

[21] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. 2015. Session-based Recom-
mendations with Recurrent Neural Networks. arXiv:1511.06939.

[22] Y. Hu, Y. Koren, and C. Volinsky. 2008. Collaborative Filtering for Implicit
Feedback Datasets. In IEEE International Conference on Data Mining (ICDM).

[23] F. Khawar, L. Poon, and N. L. Zhang. 2020. Learning the Structure of Auto-
Encoding Recommenders. In International World Wide Web Conference (WWW).

[24] Z. Li, W. Cheng, Y. Chen, H. Chen, and W. Wang. 2020. Interpretable Click-
Through Rate Prediction through Hierarchical Attention. In ACM Conference on
Web Search and Data Mining (WSDM).

[25] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun. 2018. xDeepFM: Combining
Explicit and Implicit Feature Interactions for Recommender Systems. In ACM
Conference on Knowledge Discovery and Data Mining (KDD).

[26] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. 2018. Variational Autoen-
coders for Collaborative Filtering. In International World Wide Web Conference
(WWW).

[27] S. Lobel, C. Li, J. Gao, and L. Carin. 2020. RaCT: Towards amortized ranking-
critical training for collaborative filtering. In Int. Conference on Learning Repre-
sentations (ICLR).

[28] M. Naumov, D. Mudigere, H.-J.M. Shi, J. Huang, N. Sundaraman, J. Park, X. Wang,
U. Gupta, C.-J. Wu, A.G. Azzolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii,
Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko, S. Pereira, X. Chen, W. Chen, V.
Rao, B. Jia, L. Xiong, and M. Smelyanskiy. 2019. Deep Learning Recommendation

Model for Personalization and Recommendation Systems. arXiv:1906.00091.
[29] X. Ning and G. Karypis. 2011. SLIM: Sparse Linear Methods for Top-N Rec-

ommender Systems. In IEEE International Conference on Data Mining (ICDM).
497–506.

[30] R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, and Q. Yang. 2008. One-Class
Collaborative Filtering. In IEEE International Conference on Data Mining (ICDM).

[31] S. Rendle. 2010. Factorization machines. In IEEE International Conference on Data
Mining (ICDM). 995–1000.

[32] S. Rendle. 2012. Factorization machines with libFM. ACM Transactions on
Intelligent Systems and Technology (TIST 3 (2012). Issue 3.

[33] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. 2015. AutoRec: Autoencoders meet
Collaborative Filtering. In International World Wide Web Conference (WWW).

[34] Y. Shan, T.R. Hoens, J. Jiao, H. Wang, D. Yu, and J.C. Mao. 2016. Deep Crossing:
Web-Scale Modeling without Manually Crafted Combinatorial Features. In ACM
Conference on Knowledge Discovery and Data Mining (KDD).

[35] I. Shenbin, A. Alekseev, E. Tutubalina, V. Malykh, and S. I. Nikolenko. 2020.
RecVAE: a New Variational Autoencoder for Top-N Recommendations with
Implicit Feedback. In ACM Conference on Web Search and Data Mining (WSDM).

[36] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang, and J. Tang. 2019. AutoInt:
Automatic Feature Interaction Learning via Self-Attentive Neural Networks. In
International Conference on Information and Knowledge Management (CIKM).

[37] H. Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. In Inter-
national World Wide Web Conference (WWW).

[38] H. Steck. 2019. Markov Random Fields for Collaborative Filtering. In Advances in
Neural Information Processing Systems. 5474–5485.

[39] H. Steck. 2020. Autoencoders that don’t overfit towards the identity. In Advances
in Neural Information Processing Systems (NIPS).

[40] H. Steck, M. Dimakopoulou, N. Riabov, and T. Jebara. 2020. ADMM SLIM: Sparse
Recommendations for Many Users. In ACM Conference on Web Search and Data
Mining (WSDM).

[41] R. Wang, B. Fu, G. Fu, and M. Wang. 2017. Deep & Cross Network for Ad Click
Predictions. In Proceedings of the ADKDD.

[42] R. Wang, R. Shivanna, D.Z. Cheng, S. Jain, D. Lin, L. Hong, and E.H. Chi. 2020.
DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale
Learning to Rank Systems. arXiv:2008.13535.

[43] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. 2016. Collaborative Denoising
Auto-Encoders for top-N Recommender Systems. In ACM Conference on Web
Search and Data Mining (WSDM).

[44] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua. 2017. Attentional Fac-
torization Machines: Learning the Weight of Feature Interactions via Attention
Networks. In Int. Joint Conf. on Artificial Intelligence (IJCAI).

[45] Y. Zheng, B. Tang, W. Ding, and H. Zhou. 2016. A Neural Autoregressive Ap-
proach to Collaborative Filtering. In International Conference on Machine Learning
(ICML).

43

	Abstract
	1 Introduction
	2 Review: Pairwise Model
	3 Higher-Order Model
	3.1 Data Representation
	3.2 Training Objective
	3.3 Update Equations for Training
	3.4 Comparison to HOSLIM
	3.5 Possible Extensions

	4 Related Work
	5 Experiments
	5.1 Experimental Protocols
	5.2 Experimental Results
	5.3 Exploratory Analysis

	6 Conclusions
	References

