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ABSTRACT 

Managing music audio databases for practicing musicians 
presents new and interesting challenges. We describe a sys-
tematic investigation to provide useful capabilities to musi-
cians both in rehearsal and when practicing alone. Our goal 
is to allow musicians to automatically record, organize, and 
retrieve rehearsal (and other) audio to facilitate review and 
practice (for example, playing along with difficult pas-
sages). We introduce a novel music classification system 
based on Eigenmusic and Adaboost to separate rehearsal 
recordings into segments, an unsupervised clustering and 
alignment process to organize segments, and a digital music 
display interface that provides both graphical input and out-
put in terms of conventional music notation. 

1. INTRODUCTION 

Music Information Retrieval promises new capabilities and 
new applications in the domain of music. Consider a per-
sonal music database composed of rehearsal recordings. 
Music is captured by continuously recording a series of re-
hearsals, where the music is often played in fragments and 
may be played by different subsets of the full ensemble. 
These recordings can become a valuable resource for musi-
cians, but accessing and organizing recordings by hand is 
time consuming. 

To make rehearsal recordings more useful, there are 
three main processing tasks that can be automated. (See 
Figure 1.) The first is to separate the sound into music and 
non-music segments. The music segments will consist of 
many repetitions of the same material. Many if not most of 
the segments will be fragments of an entire composition. 
We want to organize the segments, clustering them by 
composition, and aligning them to one another (and possi-
bly to other recordings of the music). Finally, we want to 
coordinate the clustered and aligned music with an interface 
to allow convenient access. 

We see these capabilities as the foundation for an inte-

grated system in which musicians can practice and compare 
their intonation, tempo, and phrasing to existing recordings 
or to rehearsal data from others. By performing alignment 
in real time, the display could also turn pages automati-
cally. 

The next section presents a novel method for mu-
sic/non-music classification and segmentation. Section 3 
describes how to organize the segments. Section 4 de-
scribes a two-way interface to the audio. 

 

Figure 1. System diagram for a musician's personal audio 
database. Rehearsal recordings are automatically processed 
for simple search, analysis, and playback using a music no-
tation-based user interface. 

2. CLASSIFICATION AND SEGMENTATION 

2.1 Related Work 

Much work has been done in the area of classification and 
segmentation on speech and music. For different tasks, 
people extract different features. Some focus on back-
ground music detection [6], while others detect speech or 
music sections in TV programs or broadcast radio. Many 
features have been tested in the realm of speech/music clas-
sification [8, 17]. Two frequently used ones are Spectral-
Centroid and Zero-Crossing Rate. Also, different statistical 
models have been used. Two of them, long window sam-
pling [7] and the HMM segmentation framework [1, 14], 
are especially relevant to our work. Other approaches in-
clude using decision trees [16] and Bayesian networks [5]. 

However, the particular problem of variations in the 
sound source seems to be largely ignored. In reality, sound 
is not standardized in volume or bandwidth and may even 
contain different kinds of noise. In these cases, more robust 
features and methods are needed. This section will concen-
trate on new feature extraction and model design methods 
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to achieve music/non-music classification and segmentation 
on realistic rehearsal audio.  

2.2 Eigenmusic Feature Extraction  

The concept of Eigenmusic is derived from the well-known 
representation of images in terms of Eigenfaces [12]. The 
process of generating Eigenmusic can be performed in both 
the time and frequency domains, and in either case, simply 
refers to the result of the application of Principal 
Component Analysis (PCA) to the audio data [3]. Therefore, 
Eigenmusic refers to the eigenvectors of an empirical 
covariance matrix associated with an array of music data. 
The array of music data is structured as a spectrogram and 
hence contains the spectral information of the audio in 
those time intervals. When expressing non-music data in 
terms of Eigenmusic, the coefficients are generally 
expected to be outlying based on the fundamentally 
different characteristics of music and non-music.  

In practice, we use about 2.5 hours of pure music in the 
training data collection to extract the Eigenmusic in the fre-
quency domain. First, let X = [x1, x2, … , xT] be a spectro-
gram, a matrix consisting of, in its columns, magnitude 
spectra corresponding to 1.25 second non-overlapping win-
dows of the incoming music data. Second, the correspond-
ing empirical covariance matrix, Cx, and its Eigenvectors 
are computed. Ultimately, we retain the first 10 eigenvec-
tors corresponding to the largest eigenvalues. If P is the 
matrix of column-wise eigenvectors of Cx, given a new 
magnitude spectrum column vector x, we can represent its 
Eigenmusic coefficients by PTx, which will be a 10-
dimensional vector. 

2.3 Adaboost Classifier  

Adaboost [18] is a very interesting classification algorithm, 
which follows a simple idea: to develop a sequence of hy-
potheses for classification and combine the classification 
results to make the final decision. Each simple hypothesis is 
individually considered a weak classifier, h(PTx), and the 
combined complex hypothesis is considered to be the 
strong classifier. In the training step, each weak classifier 
focuses on instances where the previous classifier failed. 
Then it will obtain a weight, αt, and update the weight of 
individual training data based on its performance. In the 
decoding step, the strong classifier is taken to be the sign of 
the weighted sum of weak classifiers: 

H (x) = sign( α tht (P
Tx))

t∑                             (1) 

By training a sequence of linear classifiers ht, each one of 
which merely compares an individual Eigenmusic coeffi-
cient against a threshold that minimizes the weighted error, 
Adaboost is able to implement a non-linear classification 
surface in the 10-dimensional Eigenmusic space. 

2.3.1 Data Collection and Representation 

The Adaboost training data is a collection of about 5 hours 
of rehearsal and performance recordings of western music; 
while the testing data is a collection of 2.5 hours of Chinese 
music. For the music parts, each data collection contains 
different combinations of wind instruments, string instru-
ments, and singing. For the non-music parts, each data col-
lection contains speech, silence, applause, noise, etc. Both 
data collections are labeled as music or non-music at the 
frame level (1.25 seconds). From Section 2.2, we know that 
each frame is a point in the 10-dimensional Eigenmusic 
space. Therefore, we have about 5 (hours) × 3600 (s/hour) / 
1.25 (s/frame) = 14,400 frames for training and 7,200 
frames for testing. 

2.3.2 Implementation and Evaluation  

We train 100 weak classifiers to construct the final strong 
classifier. The testing accuracy is shown in Figure 2. The 
results were obtained in terms of the percentage of error at 
the frame level. Two different statistics have been calcu-
lated: the percentage of true music identified as non-music, 
shown as the solid line, and the percentage of true non-
music identified as music, shown as the dotted line. 
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Figure 2. The testing error of music and non-music. 

From Figure 2, it can be seen that the proposed Adaboost 
classifier in the Eigenmusic space is capable of achieving a 
low error rate (about 5.5%) on both music and non-music 
data, even when the testing data comes from a completely 
different sound source from the training data. 

2.3.3 Probabilistic Interpretation  

We can improve the frame level classification by consider-
ing that state changes between music and non-music do not 
occur rapidly. We can model rehearsals as a two-state hid-
den Markov model (HMM) [13]. Formally, given a vector x, 
let y ∈ {-1,1} represent its true label. Here, -1 stands for 
non-music and 1 stands for music. And let w(x) represent 
the weighted sum of weak classifiers: 
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w(x) = α tht (P
Tx)

t∑                              (2) 

In Equation (1), we took the sign of w(x) as the decision, 
but we can modify this approach to compute the a posteri-
ori probability of y = 1, given the weighted sum, which we 
denote as the function F: 

F(w(x)) = P(y = 1 |w(x))                         (3) 

According to the discussion in [15], F(w(x)) is a logistic 
function, as shown in Equation 4: 

F(w(x)) = 1
1+ exp(−2 ⋅w(x))

                     (4) 

In Figure 3, the small circles show P(y = 1 | w(x)) estimated 
from training data sorted into bins according to w(x). The 
logistic function is shown as the solid curve. It can be seen 
that our empirical data matches the theoretical probability 
quite well. 
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Figure 3. The logistic function estimation on training data. 

We note that the idea of linking Adaboost with HMMs is 
not new, but very little work has been done to implement it 
[4, 19]. As far as we know, this is the first attempt of a 
probabilistic interpretation of Adaboost when linked with 
HMMs.  

2.4 HMM Smoothing for Segmentation  

The significance of smoothing is that even a very low error 
rate at the frame level cannot guarantee a satisfying seg-
mentation result overall (i.e. at the piece level). For exam-
ple, suppose a relatively low 5% error rate is obtained at the 
frame level. If the segmentation rule is to separate the target 
audio at every non-music frame, a 10 minute long pure mu-
sic piece would be cut into about 25 pieces in this case. Ul-
timately, this is an undesirable result.  

Based on typical characteristics of rehearsal audio data, 
we assume that: (1) music and non-music frames cannot 
alternate frequently, and (2) short duration music and non-
music intervals are less likely than longer ones. By utilizing 
these assumptions in conjunction with the HMM, low (but 

possibly deleterious) frame-level error rates can be further 
reduced. We use a fully-connected HMM with only two 
states, representing music and non-music. The HMM ob-
servation corresponding to every frame x is a real number 
w(x), as in Equation (2), given by the Adaboost classifier. 

2.4.1 HMM Training 

The training data collection mentioned in Section 2.3.1 is 
used to estimate the HMM parameters. Formally, let S = 
[S1, S2,…,ST] be the state sequence and let O = [O1, 
O2,…,OT] be the observation sequence. Since it is a super-
vised learning problem, we do Maximum Likelihood Esti-
mation (MLE) by counting or just manually setting the pa-
rameters for initial state probabilities and transition prob-
abilities. For emission probabilities, we use Bayes’ rule: 

P(Ot | St = 1) =
P(St = 1 |Ot ) ⋅P(Ot )

P(St = 1)
          (5) 

Remember that in our model Ot = w(xt) and P(Ot) is a con-
stant. Therefore, if we plug in function F according to 
Equation (3), we obtain the estimate of the emission prob-
ability of music where C denotes a constant scalar multi-
plier: 

P(Ot | St = 1) = C ⋅
F(w(xt ))
P(St = 1)

                 (6) 

Using the same method, we obtain the estimate of the emis-
sion probability of non-music: 

P(Ot | St = −1) = C ⋅
1− F(w(xt ))
P(St = −1)

              (7) 

Here, we set the a priori probability of both music and non-
music to 0.5 and then apply the Viterbi algorithm [13] to 
efficiently find the best possible state sequence for a given 
observation sequence. 

2.4.2 Implementation and Evaluation 

At the frame level, HMM smoothing reduced the error rate 
from about 5.5% to 1.8% on music and to 2.2% on non-
music. This is the same as the best claimed result [17] in 
the references [6, 7, 8, 17], where classifiers were tested on 
cleaner data sets not related to our application. Since the 
piece level evaluation has been largely ignored in previous 
works on music/non-music segmentation, we adopt an 
evaluation method from speech segmentation [20] called 
Fuzzy Recall and Precision. This method pays more atten-
tion to insertion and deletion than boundary precision. We 
get a Fuzzy Precision of 89.5% and Fuzzy Recall of 97%. 
The high Fuzzy Recall reflects that all true boundaries are 
well detected with only some imprecision around the 
boundaries. The lower Fuzzy Precision reflects that about 
10% of the detected boundaries are not true ones.  
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3. CLUSTERING OF MUSIC SEGMENTS 

Assuming perfect classification results from the previous 
step, the clustering task is a distinct problem. Our goal is to 
cluster the musical segments belonging to the same piece. 

3.1 Feature Extraction 

Chroma vectors [2] have been widely used as a robust har-
monic feature in all kinds of MIR tasks. The chroma vector 
represents the spectral energy distribution in each of the 12 
pitch classes (C, C#, D,… A#, B). Such features strongly 
correlate to the harmonic progression of the audio.  

Considering the objective that our system should be ro-
bust to external factors (e.g. audience cheering and ap-
plause), the feature cannot be too sensitive to minor varia-
tions. Therefore, as suggested by Müller, we first calculate 
12-dimensional chroma vectors using 200ms windows with 
50% overlap, then compute a longer-term summary by 
windowing over 41 consecutive short-term vectors and 
normalizing, with a 10-vector (1s) hop-size. These long-
term feature vectors are described as CENS features 
(Chroma Energy distribution Normalized Statistics) [10, 
11]. The length of the long-term window and hop size can 
be changed to take global tempo differences into account. 

3.2 Audio Matching and Clustering  

Given the CENS features, audio matching can be achieved 
by simply correlating the query clip Q = (q1, q2, … qM) with 
the subsequences of musical segments P = (p1, p2, … pN) in 
the database (assume N > M). Here, all lower case letters 
(e.g. qi, pi) represent 12-dimensional CENS vectors. Thus, 
Q and P are both sequences of CENS vectors over time. As 
in [11], the distance between the query clip Q and the sub-
sequence P(i) = (pi, pi+1,… pi+M-1) is: 

dist(Q, P(i) ) = 1- 1
M

qk , pi+ k−1
k=1

M

∑               (8) 

Here <qk, pi+k-1> denotes the dot product between these two 
CENS vectors. All of the distances for i = 1, 2, ... N−M+1 
together can be considered a distance function ∆ between 
query clip Q and each of the musical segments P in the da-
tabase. If the minimum distance is less than a preset thresh-
old γ, then Q can be clustered with P.  

One problem with this decision scheme is that, unlike a 
traditional song retrieval system which has a large reference 
database in advance, our system has no prior information 
about the rehearsal audio stream. We are only given a 
stream of potentially unordered and unlabeled audio that 
needs to be clustered. To solve this problem, we construct 
the database from the input audio dynamically. The inputs 
are all the music segments obtained from Section 2, and the 
algorithm is: 

1. Sort all the music segments according to their length. 
2. Take out the longest segment S. 

i) If database D is empty, put S into D as a cluster.  
ii) Otherwise match S with every segment in D by 

calculating distance function ∆. Let Dm be the 
segment in D with the best match. 
(1) If the distance function ∆ of Dm with S has a 

minimum less than γ, cluster S with Dm. 
(2) Otherwise make S a new cluster in D. 

iii) Repeat step 2 until all segments are clustered. 

Here we made a critical assumption: the longest segment 
is most likely to be a whole piece or at least the longest 
segment for this distinct piece, so it is reasonable to let it 
represent a new cluster. At every step of the iteration, we 
take out a new segment S which is guaranteed to be shorter 
than any of the segments in database D. This implies it can 
either be part of an existing piece in the database (in which 
case we will cluster it with a matching segment) or it is a 
segment for a new piece which does not yet exist in the da-
tabase (in which case we will make it a new cluster). 

We also need to consider the possibility that tempo dif-
ferences cause misalignment between sequences. We can 
obtain different versions of CENS features (for example, 
from 10% slower to 10% faster) for the same segment to 
represent the possible tempos. This is achieved by adjusting 
the length of the long-term window and the hop size as 
mentioned in Section 3.1. During matching, the version of 
the segment with the lowest distance function minimum 
will be chosen.  

3.2.1 Segment Length vs. Threshold Value 

While time scaling compensates for global tempo differ-
ences, it does not account for local variation within seg-
ments. It is interesting to consider the length of the query 
clip that is used to correlate with the segments in the data-
base. Intuitively, longer clips will be more selective, reduc-
ing spurious matches. However, if the length is too large, 
e.g. two segments both longer than 5 minutes, sequence 
misalignments due to tempo variation will decrease the cor-
relation and increase the distance. If longer segments lead 
to greater distance, one might compensate with larger 
threshold values (γ). However, larger γ values may not 
prove strict enough to filter out noise, leading to clustering 
errors. We will compare two pairs of configurations: longer 
segments with larger γ and shorter segments with smaller γ. 

3.2.2 Experiments and Evaluation 

We have two parameters to control: γ, which determines if 
the two segments are close enough to be clustered together, 
and t, the length of the segments. We use hours of rehearsal 
recordings as test data, with styles that include classical, 
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rock, and jazz. We also use live performance recordings, 
which are typically even longer. To evaluate the clustering 
results, we use the F-measure as discussed in [9]:  

P =
TP

TP + FP
,  R =

TP
TP + FN

                          (9) 

  Fβ =
(β 2 +1)PR
β 2P + R

                                   (10) 

Here, P (precision) and R (recall) are determined by 4 dif-
ferent variables: TP (true positive) which corresponds to 
assigning two similar segments to the same cluster, TN 
(true negative) corresponding to assigning two dissimilar 
segments to the different clusters, FP (false positive) corre-
sponding to assigning two dissimilar segments to the same 
cluster, and FN (false negative) which corresponds to as-
signing two similar segments to different clusters. β is the 
tuning parameter used to adjust the emphasis on precision 
or recall. In our case, it is more important to avoid cluster-
ing segments from different pieces into one cluster than it is 
to avoid “oversegmenting” by creating too many clusters. 
The latter case is more easily rectified manually. Thus, we 
would like to penalize more on false positives, which leads 
to choosing β < 1. Here, we use β = 0.9. Considering the 
possible noise near the beginning and the end of the record-
ings, we choose the middle t seconds if the segment is 
shorter than the original recording.  

As seen in Figure 4, for segments longer than 3 minutes, 
the relatively larger γ = 0.25 outperforms others, while for 
shorter segments around 20s to 60s, the smaller γ = 0.15 has 
the best performance. It is also shown that if γ is set too 
large (0.35), the performance drops drastically. Overall, 
shorter segments and smaller γ give us better results than 
longer segments and larger γ. Finally, since calculating cor-
relation has O(n2) complexity, shorter segment lengths can 
also save significant computation. Thus, our current system 
uses a segment length t = 40s and γ = 0.15. K-means clus-
tering was also tested but did not work as well as our algo-
rithm because of the non-uniform segment length and un-
known number of clusters (details omitted for reasons of 
space). 

4. USER INTERFACE 

Ultimately, we plan to integrate our rehearsal audio into a 
digital music display and practice support system (see Fig-
ure 5.). While listening to a performance, the user can tap 
on music locations to establish a correspondence between 
music audio and music notation. Once the music has been 
annotated in this manner, audio-to-audio alignment (a by-
product of clustering) can be used to align other audio 
automatically. The user can then point to a music passage 
in order to call up a menu of matching audio sorted by date, 

length, tempo, or other attributes. The user can then prac-
tice with the recording in order to work on tempo, phrasing, 
or intonation, or the user might simply review a recent re-
hearsal, checking on known trouble spots. One of the excit-
ing elements of this interface is that we can make useful 
audio available quickly through a natural, intuitive interface 
(music notation). It is easy to import scanned images of no-
tation into the system and create these interfaces. 
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Figure 4. Experimental results with different segments of 
length t and matching threshold γ. 

 
Figure 5. Audio database is accessed through a common 
music notation interface. The user has selected the begin-
ning of system 3 as a starting point for audio playback, and 
the current audio playback location is shown by the thick 
vertical bar at the beginning of system 4. 
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5. CONCLUSIONS 

We have presented a system for automated management of 
a personal audio database for practicing musicians. The 
system segments recordings and organizes them through 
unsupervised clustering and alignment. An interface based 
on common music notation allows the user to quickly re-
trieve music audio for practice or review. Our work intro-
duces Eigenmusic as a music detection feature, a probabil-
istic connection between Adaboost and HMMs, an unsu-
pervised clustering algorithm for music audio organization, 
and a notation-based interface that takes advantage of 
audio-to-audio alignment. In the future, we will fully inte-
grate these components and test them with actual users. 
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