
12th International Society for Music Information Retrieval Conference (ISMIR 2011)

SEGMENTATION, CLUSTERING, AND DISPLAY IN A
PERSONAL AUDIO DATABASE FOR MUSICIANS

Guangyu Xia Dawen Liang Roger B. Dannenberg Mark J. Harvilla
Carnegie Mellon University

{gxia, dawenl, rbd, mharvill}@andrew.cmu.edu

ABSTRACT

Managing music audio databases for practicing musicians
presents new and interesting challenges. We describe a sys-
tematic investigation to provide useful capabilities to musi-
cians both in rehearsal and when practicing alone. Our goal
is to allow musicians to automatically record, organize, and
retrieve rehearsal (and other) audio to facilitate review and
practice (for example, playing along with difficult pas-
sages). We introduce a novel music classification system
based on Eigenmusic and Adaboost to separate rehearsal
recordings into segments, an unsupervised clustering and
alignment process to organize segments, and a digital music
display interface that provides both graphical input and out-
put in terms of conventional music notation.

1. INTRODUCTION

Music Information Retrieval promises new capabilities and
new applications in the domain of music. Consider a per-
sonal music database composed of rehearsal recordings.
Music is captured by continuously recording a series of re-
hearsals, where the music is often played in fragments and
may be played by different subsets of the full ensemble.
These recordings can become a valuable resource for musi-
cians, but accessing and organizing recordings by hand is
time consuming.

To make rehearsal recordings more useful, there are
three main processing tasks that can be automated. (See
Figure 1.) The first is to separate the sound into music and
non-music segments. The music segments will consist of
many repetitions of the same material. Many if not most of
the segments will be fragments of an entire composition.
We want to organize the segments, clustering them by
composition, and aligning them to one another (and possi-
bly to other recordings of the music). Finally, we want to
coordinate the clustered and aligned music with an interface
to allow convenient access.

We see these capabilities as the foundation for an inte-

grated system in which musicians can practice and compare
their intonation, tempo, and phrasing to existing recordings
or to rehearsal data from others. By performing alignment
in real time, the display could also turn pages automati-
cally.

The next section presents a novel method for mu-
sic/non-music classification and segmentation. Section 3
describes how to organize the segments. Section 4 de-
scribes a two-way interface to the audio.

Figure 1. System diagram for a musician's personal audio
database. Rehearsal recordings are automatically processed
for simple search, analysis, and playback using a music no-
tation-based user interface.

2. CLASSIFICATION AND SEGMENTATION

2.1 Related Work

Much work has been done in the area of classification and
segmentation on speech and music. For different tasks,
people extract different features. Some focus on back-
ground music detection [6], while others detect speech or
music sections in TV programs or broadcast radio. Many
features have been tested in the realm of speech/music clas-
sification [8, 17]. Two frequently used ones are Spectral-
Centroid and Zero-Crossing Rate. Also, different statistical
models have been used. Two of them, long window sam-
pling [7] and the HMM segmentation framework [1, 14],
are especially relevant to our work. Other approaches in-
clude using decision trees [16] and Bayesian networks [5].

However, the particular problem of variations in the
sound source seems to be largely ignored. In reality, sound
is not standardized in volume or bandwidth and may even
contain different kinds of noise. In these cases, more robust
features and methods are needed. This section will concen-
trate on new feature extraction and model design methods

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
© 2011 International Society for Music Information Retrieval

139

Poster Session 1

to achieve music/non-music classification and segmentation
on realistic rehearsal audio.

2.2 Eigenmusic Feature Extraction

The concept of Eigenmusic is derived from the well-known
representation of images in terms of Eigenfaces [12]. The
process of generating Eigenmusic can be performed in both
the time and frequency domains, and in either case, simply
refers to the result of the application of Principal
Component Analysis (PCA) to the audio data [3]. Therefore,
Eigenmusic refers to the eigenvectors of an empirical
covariance matrix associated with an array of music data.
The array of music data is structured as a spectrogram and
hence contains the spectral information of the audio in
those time intervals. When expressing non-music data in
terms of Eigenmusic, the coefficients are generally
expected to be outlying based on the fundamentally
different characteristics of music and non-music.

In practice, we use about 2.5 hours of pure music in the
training data collection to extract the Eigenmusic in the fre-
quency domain. First, let X = [x1, x2, … , xT] be a spectro-
gram, a matrix consisting of, in its columns, magnitude
spectra corresponding to 1.25 second non-overlapping win-
dows of the incoming music data. Second, the correspond-
ing empirical covariance matrix, Cx, and its Eigenvectors
are computed. Ultimately, we retain the first 10 eigenvec-
tors corresponding to the largest eigenvalues. If P is the
matrix of column-wise eigenvectors of Cx, given a new
magnitude spectrum column vector x, we can represent its
Eigenmusic coefficients by PTx, which will be a 10-
dimensional vector.

2.3 Adaboost Classifier

Adaboost [18] is a very interesting classification algorithm,
which follows a simple idea: to develop a sequence of hy-
potheses for classification and combine the classification
results to make the final decision. Each simple hypothesis is
individually considered a weak classifier, h(PTx), and the
combined complex hypothesis is considered to be the
strong classifier. In the training step, each weak classifier
focuses on instances where the previous classifier failed.
Then it will obtain a weight, αt, and update the weight of
individual training data based on its performance. In the
decoding step, the strong classifier is taken to be the sign of
the weighted sum of weak classifiers:

H (x) = sign(α tht (P
Tx))

t∑ (1)

By training a sequence of linear classifiers ht, each one of
which merely compares an individual Eigenmusic coeffi-
cient against a threshold that minimizes the weighted error,
Adaboost is able to implement a non-linear classification
surface in the 10-dimensional Eigenmusic space.

2.3.1 Data Collection and Representation

The Adaboost training data is a collection of about 5 hours
of rehearsal and performance recordings of western music;
while the testing data is a collection of 2.5 hours of Chinese
music. For the music parts, each data collection contains
different combinations of wind instruments, string instru-
ments, and singing. For the non-music parts, each data col-
lection contains speech, silence, applause, noise, etc. Both
data collections are labeled as music or non-music at the
frame level (1.25 seconds). From Section 2.2, we know that
each frame is a point in the 10-dimensional Eigenmusic
space. Therefore, we have about 5 (hours) × 3600 (s/hour) /
1.25 (s/frame) = 14,400 frames for training and 7,200
frames for testing.

2.3.2 Implementation and Evaluation

We train 100 weak classifiers to construct the final strong
classifier. The testing accuracy is shown in Figure 2. The
results were obtained in terms of the percentage of error at
the frame level. Two different statistics have been calcu-
lated: the percentage of true music identified as non-music,
shown as the solid line, and the percentage of true non-
music identified as music, shown as the dotted line.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of weak classifiers

er
ro

r r
at

e

error rate of testing data

music
non music

Figure 2. The testing error of music and non-music.

From Figure 2, it can be seen that the proposed Adaboost
classifier in the Eigenmusic space is capable of achieving a
low error rate (about 5.5%) on both music and non-music
data, even when the testing data comes from a completely
different sound source from the training data.

2.3.3 Probabilistic Interpretation

We can improve the frame level classification by consider-
ing that state changes between music and non-music do not
occur rapidly. We can model rehearsals as a two-state hid-
den Markov model (HMM) [13]. Formally, given a vector x,
let y ∈ {-1,1} represent its true label. Here, -1 stands for
non-music and 1 stands for music. And let w(x) represent
the weighted sum of weak classifiers:

140

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

w(x) = α tht (P
Tx)

t∑ (2)

In Equation (1), we took the sign of w(x) as the decision,
but we can modify this approach to compute the a posteri-
ori probability of y = 1, given the weighted sum, which we
denote as the function F:

F(w(x)) = P(y = 1 |w(x)) (3)

According to the discussion in [15], F(w(x)) is a logistic
function, as shown in Equation 4:

F(w(x)) = 1
1+ exp(−2 ⋅w(x))

 (4)

In Figure 3, the small circles show P(y = 1 | w(x)) estimated
from training data sorted into bins according to w(x). The
logistic function is shown as the solid curve. It can be seen
that our empirical data matches the theoretical probability
quite well.

3 2 1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

w(x)

p(
y=

1|
w

(x
))

logistic estimation

Figure 3. The logistic function estimation on training data.

We note that the idea of linking Adaboost with HMMs is
not new, but very little work has been done to implement it
[4, 19]. As far as we know, this is the first attempt of a
probabilistic interpretation of Adaboost when linked with
HMMs.

2.4 HMM Smoothing for Segmentation

The significance of smoothing is that even a very low error
rate at the frame level cannot guarantee a satisfying seg-
mentation result overall (i.e. at the piece level). For exam-
ple, suppose a relatively low 5% error rate is obtained at the
frame level. If the segmentation rule is to separate the target
audio at every non-music frame, a 10 minute long pure mu-
sic piece would be cut into about 25 pieces in this case. Ul-
timately, this is an undesirable result.

Based on typical characteristics of rehearsal audio data,
we assume that: (1) music and non-music frames cannot
alternate frequently, and (2) short duration music and non-
music intervals are less likely than longer ones. By utilizing
these assumptions in conjunction with the HMM, low (but

possibly deleterious) frame-level error rates can be further
reduced. We use a fully-connected HMM with only two
states, representing music and non-music. The HMM ob-
servation corresponding to every frame x is a real number
w(x), as in Equation (2), given by the Adaboost classifier.

2.4.1 HMM Training

The training data collection mentioned in Section 2.3.1 is
used to estimate the HMM parameters. Formally, let S =
[S1, S2,…,ST] be the state sequence and let O = [O1,
O2,…,OT] be the observation sequence. Since it is a super-
vised learning problem, we do Maximum Likelihood Esti-
mation (MLE) by counting or just manually setting the pa-
rameters for initial state probabilities and transition prob-
abilities. For emission probabilities, we use Bayes’ rule:

P(Ot | St = 1) =
P(St = 1 |Ot) ⋅P(Ot)

P(St = 1)
 (5)

Remember that in our model Ot = w(xt) and P(Ot) is a con-
stant. Therefore, if we plug in function F according to
Equation (3), we obtain the estimate of the emission prob-
ability of music where C denotes a constant scalar multi-
plier:

P(Ot | St = 1) = C ⋅
F(w(xt))
P(St = 1)

 (6)

Using the same method, we obtain the estimate of the emis-
sion probability of non-music:

P(Ot | St = −1) = C ⋅
1− F(w(xt))
P(St = −1)

 (7)

Here, we set the a priori probability of both music and non-
music to 0.5 and then apply the Viterbi algorithm [13] to
efficiently find the best possible state sequence for a given
observation sequence.

2.4.2 Implementation and Evaluation

At the frame level, HMM smoothing reduced the error rate
from about 5.5% to 1.8% on music and to 2.2% on non-
music. This is the same as the best claimed result [17] in
the references [6, 7, 8, 17], where classifiers were tested on
cleaner data sets not related to our application. Since the
piece level evaluation has been largely ignored in previous
works on music/non-music segmentation, we adopt an
evaluation method from speech segmentation [20] called
Fuzzy Recall and Precision. This method pays more atten-
tion to insertion and deletion than boundary precision. We
get a Fuzzy Precision of 89.5% and Fuzzy Recall of 97%.
The high Fuzzy Recall reflects that all true boundaries are
well detected with only some imprecision around the
boundaries. The lower Fuzzy Precision reflects that about
10% of the detected boundaries are not true ones.

141

Poster Session 1

3. CLUSTERING OF MUSIC SEGMENTS

Assuming perfect classification results from the previous
step, the clustering task is a distinct problem. Our goal is to
cluster the musical segments belonging to the same piece.

3.1 Feature Extraction

Chroma vectors [2] have been widely used as a robust har-
monic feature in all kinds of MIR tasks. The chroma vector
represents the spectral energy distribution in each of the 12
pitch classes (C, C#, D,… A#, B). Such features strongly
correlate to the harmonic progression of the audio.

Considering the objective that our system should be ro-
bust to external factors (e.g. audience cheering and ap-
plause), the feature cannot be too sensitive to minor varia-
tions. Therefore, as suggested by Müller, we first calculate
12-dimensional chroma vectors using 200ms windows with
50% overlap, then compute a longer-term summary by
windowing over 41 consecutive short-term vectors and
normalizing, with a 10-vector (1s) hop-size. These long-
term feature vectors are described as CENS features
(Chroma Energy distribution Normalized Statistics) [10,
11]. The length of the long-term window and hop size can
be changed to take global tempo differences into account.

3.2 Audio Matching and Clustering

Given the CENS features, audio matching can be achieved
by simply correlating the query clip Q = (q1, q2, … qM) with
the subsequences of musical segments P = (p1, p2, … pN) in
the database (assume N > M). Here, all lower case letters
(e.g. qi, pi) represent 12-dimensional CENS vectors. Thus,
Q and P are both sequences of CENS vectors over time. As
in [11], the distance between the query clip Q and the sub-
sequence P(i) = (pi, pi+1,… pi+M-1) is:

dist(Q, P(i)) = 1- 1
M

qk , pi+ k−1
k=1

M

∑ (8)

Here <qk, pi+k-1> denotes the dot product between these two
CENS vectors. All of the distances for i = 1, 2, ... N−M+1
together can be considered a distance function ∆ between
query clip Q and each of the musical segments P in the da-
tabase. If the minimum distance is less than a preset thresh-
old γ, then Q can be clustered with P.

One problem with this decision scheme is that, unlike a
traditional song retrieval system which has a large reference
database in advance, our system has no prior information
about the rehearsal audio stream. We are only given a
stream of potentially unordered and unlabeled audio that
needs to be clustered. To solve this problem, we construct
the database from the input audio dynamically. The inputs
are all the music segments obtained from Section 2, and the
algorithm is:

1. Sort all the music segments according to their length.
2. Take out the longest segment S.

i) If database D is empty, put S into D as a cluster.
ii) Otherwise match S with every segment in D by

calculating distance function ∆. Let Dm be the
segment in D with the best match.
(1) If the distance function ∆ of Dm with S has a

minimum less than γ, cluster S with Dm.
(2) Otherwise make S a new cluster in D.

iii) Repeat step 2 until all segments are clustered.

Here we made a critical assumption: the longest segment
is most likely to be a whole piece or at least the longest
segment for this distinct piece, so it is reasonable to let it
represent a new cluster. At every step of the iteration, we
take out a new segment S which is guaranteed to be shorter
than any of the segments in database D. This implies it can
either be part of an existing piece in the database (in which
case we will cluster it with a matching segment) or it is a
segment for a new piece which does not yet exist in the da-
tabase (in which case we will make it a new cluster).

We also need to consider the possibility that tempo dif-
ferences cause misalignment between sequences. We can
obtain different versions of CENS features (for example,
from 10% slower to 10% faster) for the same segment to
represent the possible tempos. This is achieved by adjusting
the length of the long-term window and the hop size as
mentioned in Section 3.1. During matching, the version of
the segment with the lowest distance function minimum
will be chosen.

3.2.1 Segment Length vs. Threshold Value

While time scaling compensates for global tempo differ-
ences, it does not account for local variation within seg-
ments. It is interesting to consider the length of the query
clip that is used to correlate with the segments in the data-
base. Intuitively, longer clips will be more selective, reduc-
ing spurious matches. However, if the length is too large,
e.g. two segments both longer than 5 minutes, sequence
misalignments due to tempo variation will decrease the cor-
relation and increase the distance. If longer segments lead
to greater distance, one might compensate with larger
threshold values (γ). However, larger γ values may not
prove strict enough to filter out noise, leading to clustering
errors. We will compare two pairs of configurations: longer
segments with larger γ and shorter segments with smaller γ.

3.2.2 Experiments and Evaluation

We have two parameters to control: γ, which determines if
the two segments are close enough to be clustered together,
and t, the length of the segments. We use hours of rehearsal
recordings as test data, with styles that include classical,

142

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

rock, and jazz. We also use live performance recordings,
which are typically even longer. To evaluate the clustering
results, we use the F-measure as discussed in [9]:

P =
TP

TP + FP
, R =

TP
TP + FN

 (9)

 Fβ =
(β 2 +1)PR
β 2P + R

 (10)

Here, P (precision) and R (recall) are determined by 4 dif-
ferent variables: TP (true positive) which corresponds to
assigning two similar segments to the same cluster, TN
(true negative) corresponding to assigning two dissimilar
segments to the different clusters, FP (false positive) corre-
sponding to assigning two dissimilar segments to the same
cluster, and FN (false negative) which corresponds to as-
signing two similar segments to different clusters. β is the
tuning parameter used to adjust the emphasis on precision
or recall. In our case, it is more important to avoid cluster-
ing segments from different pieces into one cluster than it is
to avoid “oversegmenting” by creating too many clusters.
The latter case is more easily rectified manually. Thus, we
would like to penalize more on false positives, which leads
to choosing β < 1. Here, we use β = 0.9. Considering the
possible noise near the beginning and the end of the record-
ings, we choose the middle t seconds if the segment is
shorter than the original recording.

As seen in Figure 4, for segments longer than 3 minutes,
the relatively larger γ = 0.25 outperforms others, while for
shorter segments around 20s to 60s, the smaller γ = 0.15 has
the best performance. It is also shown that if γ is set too
large (0.35), the performance drops drastically. Overall,
shorter segments and smaller γ give us better results than
longer segments and larger γ. Finally, since calculating cor-
relation has O(n2) complexity, shorter segment lengths can
also save significant computation. Thus, our current system
uses a segment length t = 40s and γ = 0.15. K-means clus-
tering was also tested but did not work as well as our algo-
rithm because of the non-uniform segment length and un-
known number of clusters (details omitted for reasons of
space).

4. USER INTERFACE

Ultimately, we plan to integrate our rehearsal audio into a
digital music display and practice support system (see Fig-
ure 5.). While listening to a performance, the user can tap
on music locations to establish a correspondence between
music audio and music notation. Once the music has been
annotated in this manner, audio-to-audio alignment (a by-
product of clustering) can be used to align other audio
automatically. The user can then point to a music passage
in order to call up a menu of matching audio sorted by date,

length, tempo, or other attributes. The user can then prac-
tice with the recording in order to work on tempo, phrasing,
or intonation, or the user might simply review a recent re-
hearsal, checking on known trouble spots. One of the excit-
ing elements of this interface is that we can make useful
audio available quickly through a natural, intuitive interface
(music notation). It is easy to import scanned images of no-
tation into the system and create these interfaces.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Segment Length (s)

F
m

ea
su

re

 = 0.15
 = 0.20
 = 0.25
 = 0.30
 = 0.35

Figure 4. Experimental results with different segments of
length t and matching threshold γ.

Figure 5. Audio database is accessed through a common
music notation interface. The user has selected the begin-
ning of system 3 as a starting point for audio playback, and
the current audio playback location is shown by the thick
vertical bar at the beginning of system 4.

143

Poster Session 1

5. CONCLUSIONS

We have presented a system for automated management of
a personal audio database for practicing musicians. The
system segments recordings and organizes them through
unsupervised clustering and alignment. An interface based
on common music notation allows the user to quickly re-
trieve music audio for practice or review. Our work intro-
duces Eigenmusic as a music detection feature, a probabil-
istic connection between Adaboost and HMMs, an unsu-
pervised clustering algorithm for music audio organization,
and a notation-based interface that takes advantage of
audio-to-audio alignment. In the future, we will fully inte-
grate these components and test them with actual users.

6. ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation
under Grant No. 0855958. We wish to thank Bhiksha Raj
for suggestions and comments on this work, and the Chi-
nese Music Institute of Peking University for providing
recordings of rehearsal for analysis.

7. REFERENCES

[1] J. Ajmera, I. McCowan and H. Bourlard:
“Speech/Music Segmentation Using Entropy and
Dynamism Features in a HMM Classification
Framework,” Speech Communi-cation 40 (3), pp. 351-
363, 2003.

[2] M. Bartsch and G. Wakefield: “To Catch a Chorus:
Using Chroma-Based Representations for Audio
Thumbnailing,” IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, pp. 15-18,
2001.

[3] D. Beyerbach, H. Nawab: “Principal Components
Analysis of Short-Time Fourier Transform,”
International Conference on Acoustics, Speech, and
Signal Processing, 1991.

[4] C. Dimitrakakis and S. Bengio: “Boosting HMMs
with an Application to Speech Recognition,”
International Conference on Acoustics, Speech, and
Signal Processing, Montreal, Canada, 2004.

[5] T. Giannakopoulos, A. Pikrakis and S. Theodoridis: “A
Speech/Music Discriminator for Radio Recordings
Using Bayesian Networks,” International Conference
on Acoustics, Speech, and Signal Processing, 2006.

[6] T. Izumitani, R. Mukai, and K. Kashino: “A
Background Music Detection Method Based on Robust
Feature Extraction,” International Conference on
Acoustics, Speech, and Signal Processing, 2008.

[7] K. Lee and D. Ellis: “Detecting Music in Ambient
Audio by Long-Window Autocorrelation,”
International Conference on Acoustics, Speech, and
Signal Processing, Las Vegas, USA, 2008.

[8] G. Lu and T. Hankinson: “A Technique Towards
Automatic Audio Classification and Retrieval,”
Proceedings of ICSP, Beijing, China, 1998.

[9] C. D. Manning, P. Raghavan, and H. Schütze:
Introduction to Information Retrieval, Cambridge
University Press, 2008.

[10] M. Müller, S. Ewert, and S. Kreuzer: “Making Chroma
Features More Robust to Timbre Changes,”
International Conference on Acoustics, Speech, and
Signal Processing, pp. 1869-1872, Taipei, Taiwan,
2009.

[11] M. Müller, F. Kurth, and M. Clausen: “Audio
Matching via Chroma-Based Statistical Features,” in
Proceedings of the 6th International Conference on
Music Information Retrieval, pp. 288-295, 2005.

[12] D. Pissarenko: “Eigenface-based facial recognition,”
2002.

[13] L. Rabiner: “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,”
Proceedings of the IEEE, 77(2), pp. 257-287, 1989.

[14] C. Rhodes, M. Casey, S. Abdallah, and M. Sandler: “A
Markov-chain Monte-Carlo approach to musical audio
segmentation,” International Conference on Acoustics,
Speech, and Signal Processing, 2006.

[15] J. Riedman, T. Hastie, and R. Tibshirani: “Additive
Logistic Regression: A Statistical View of Boosting,”
The Annals of Statistics, vol 208, No.2, pp. 337-407,
2000.

[16] A. Samouelian, J. Robert-Ribes, and M. Plumpe:
“Speech, Silence, Music and Noise Classification of
TV Broadcast Material,” Proceedings of International
Conference on Spoken Language Processing, vol. 3, pp.
1099-1102, Sydney, Australia, 1998.

[17] J. Saunders: “Real Time Discrimination of Broadcast
Speech/Music,” International Conference on
Acoustics, Speech, and Signal Processing, pp. 993-996,
1996.

[18] R. E. Schapire: “A Brief Introduction to Boosting,”
Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, 1999.

[19] H. Schwenk: “Using Boosting to Improve a Hybrid
HMM/Neural Network Speech Recognizer,”
International Conference on Acoustics, Speech, and
Signal Processing, pp. 1009-1012, 1999.

[20] B. Ziół, S. Manandhar, and R. C. Wilson: “Fuzzy
Recall and Precision for Speech Segmentation
Evaluation,” Proceedings of 3rd Language &
Technology Conference, Poznan, Poland, 2007.

144

